Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
J Hazard Mater ; 472: 134476, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38691996

RESUMEN

1,2-Dichloroethane (1,2-DCA), a widely utilized chemical intermediate and organic solvent in industry, frequently enters the environment due to accidental leaks and mishandling during application processes. Thus, the in-situ remediation of contaminated sites has become increasingly urgent. However, traditional remediation methods are inefficient and costly, while bioremediation presents a green, efficient, and non-secondary polluting alternative. In this study, an engineered strain capable of completely degrading 1,2-DCA was constructed. We introduced six exogenous genes of the 1,2-DCA degradation pathway into E. coli and confirmed their normal transcription and efficient expression in this engineered strain through qRT-PCR and proteomics. The degradation experiments showed that the strain completely degraded 2 mM 1,2-DCA within 12 h. Furthermore, the results of isotope tracing verified that the final degradation product, malic acid, entered the tricarboxylic acid cycle (TCA) of E. coli and was ultimately fully metabolized. Also, morphological changes in the engineered strain and control strain exposed to 1,2-DCA were observed under SEM, and the results revealed that the engineered strain is more tolerant to 1,2-DCA than the control strain. In conclusion, this study paved a new way for humanity to deal with the increasingly complex environmental challenges.

2.
Biomed Rep ; 20(2): 28, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38259588

RESUMEN

Infection with multi-drug resistant organisms (MDROs) has emerged as a global problem in medical institutions. Overuse of antibiotics is the main cause of drug resistance. Notably, the incidence of infection with MDROs increases in patients with limb fractures who have undergone invasive surgery. The present study aimed to analyze the risk factors for postoperative MDROs infection in a cohort of patients with limb fractures. A retrospective study was performed on the data of patients with fractures between January 2020 and August 2022. Postoperative surgical site infection occurred in 114 patients in total, of which 47 were infected with MDROs. Univariate logistic regression analysis and multivariate binary logistic regression were used to confirm the associations between independent risk factors and MDRO infection. A total of 155 bacteria were collected from patients with MDROs infection and patients with non-MDROs infection, of which 66.5% were gram-positive bacteria and 33.5% were gram-negative. Staphylococcus aureus accounted for 26.5% of the 155 pathogens. MDROs, such as methicillin-resistant S. aureus and extended-spectrum ß-lactamases-positive gram-negative bacillus, were detected after antibiotic treatment. Univariate analysis indicated that the number of antibiotics administered, being bedridden, repeat infection, operative time and repeated operation were different in the two groups. In addition, univariate logistic analysis indicated that being bedridden (OR, 3.98; P=0.001), administration of >2 antibiotics (OR, 2.42; P=0.026), an operative time of >3 h (OR, 3.37; P=0.003), repeated infection (OR, 3.08; P=0.009) and repetition of procedures (OR, 2.25; P=0.039) were individual risk factors for MDRO infection. Multivariate analysis showed that being bedridden (OR, 2.66; P=0.037), repeated infection (OR, 4.00; P=0.005) and an operative time of >3 h (OR, 2.28; P=0.023) were risk factors of MDRO infection. In conclusion, constrained antibiotic use, shortened operative time and increased activity duration can effectively prevent surgical-site infection with MDROs in patients with fractures.

3.
Neurosci Bull ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973720

RESUMEN

Neuroinflammation mediated by microglia and oxidative stress play pivotal roles in the development of chronic temporal lobe epilepsy (TLE). We postulated that kainic acid (KA)-Induced status epilepticus triggers microglia-dependent inflammation, leading to neuronal damage, a lowered seizure threshold, and the emergence of spontaneous recurrent seizures (SRS). Extensive evidence from our laboratory suggests that dextromethorphan (DM), even in ultra-low doses, has anti-inflammatory and neuroprotective effects in many animal models of neurodegenerative disease. Our results showed that administration of DM (10 ng/kg per day; subcutaneously via osmotic minipump for 4 weeks) significantly mitigated the residual effects of KA, including the frequency of SRS and seizure susceptibility. In addition, DM-treated rats showed improved cognitive function and reduced hippocampal neuronal loss. We found suppressed microglial activation-mediated neuroinflammation and decreased expression of hippocampal gp91phox and p47phox proteins in KA-induced chronic TLE rats. Notably, even after discontinuation of DM treatment, ultra-low doses of DM continued to confer long-term anti-seizure and neuroprotective effects, which were attributed to the inhibition of microglial NADPH oxidase 2 as revealed by mechanistic studies.

4.
Virol J ; 20(1): 277, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017515

RESUMEN

BACKGROUND: In a randomized trial, Lianhuaqingwen (LHQW) capsule was effective for accelerating symptom recovery among patients with coronavirus disease 2019 (COVID-19). However, the lack of blinding and limited sample sizes decreased the level of clinical evidence. OBJECTIVES: To evaluate the efficacy and safety of LHQW capsule in adults with mild-to-moderate COVID-19. METHODS: We conducted a double-blind randomized controlled trial in adults with mild-to-moderate COVID-19 (17 sites from China, Thailand, Philippine and Vietnam). Patients received standard-of-care alone or plus LHQW capsules (4 capsules, thrice daily) for 14 days. The primary endpoint was the median time to sustained clinical improvement or resolution of nine major symptoms. RESULTS: The full-analysis set consisted of 410 patients in LHQW capsules and 405 in placebo group. LHQW significantly shortened the primary endpoint in the full-analysis set (4.0 vs. 6.7 days, hazards ratio: 1.63, 95% confidence interval: 1.39-1.90). LHQW capsules shortened the median time to sustained clinical improvement or resolution of stuffy or runny nose (2.8 vs. 3.7 days), sore throat (2.0 vs. 2.6 days), cough (3.2 vs. 4.9 days), feeling hot or feverish (1.0 vs. 1.3 days), low energy or tiredness (1.3 vs. 1.9 days), and myalgia (1.5 vs. 2.0 days). The duration to sustained clinical improvement or resolution of shortness of breath, headache, and chills or shivering did not differ significantly between the two groups. Safety was comparable between the two groups. No serious adverse events were reported. INTERPRETATION: LHQW capsules promote recovery of mild-to-moderate COVID-19 via accelerating symptom resolution and were well tolerated. Trial registration ChiCTR2200056727 .


Asunto(s)
COVID-19 , Medicamentos Herbarios Chinos , Adulto , Humanos , Método Doble Ciego , Medicamentos Herbarios Chinos/uso terapéutico , Resultado del Tratamiento
5.
Nanoscale ; 15(41): 16752-16765, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37817681

RESUMEN

Flash-sintered (FS) ceramics have shown promising mechanical deformability at room temperature compared to conventional sintered ceramics. One major contributing factor to plasticity is high-density defects, such as dislocations, stacking faults and point defects, resulted presumably from the high electrical field during flash sintering. However, such direct experiemtnal evidence for defect formation and evolution under the electric field remains lacking. Here we performed in situ biasing experiments in FS and conventionally sintered (CS) polycrystalline TiO2 in a transmission electron microscope (TEM) to compare the defect evolution dynamics. In situ TEM studies revealed the coalescence of point defects under the electrical field in both FS and CS TiO2 and the subsequent formation of stacking faults, which are often referred to as Wadsley defects. Surprisingly, under the electrical field, the average fault growth rate in the FS samples is 10 times as much as that in the CS TiO2. Furthermore, the Magnéli phase, a 3D oxygen-deficient phase formed by the aggregation of Wadsley defects, is observed in the FS samples, but not in the CS samples. The present study provides new insights into defect dynamics in FS ceramics.

6.
Materials (Basel) ; 16(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37763579

RESUMEN

Chromium Nitride (CrN) coatings have widespread utilization across numerous industrial applications, primarily attributed to their excellent properties. Among the different methods for CrN coating synthesis, direct current magnetron sputtering (DCMS) has been the dominant technique applied. Nonetheless, with the expanded applications of CrN coatings, the need for enhanced mechanical performance is concurrently escalating. High-power impulse magnetron sputtering (HiPIMS), an innovative coating deposition approach developed over the past three decades, is gaining recognition for its capability of yielding coatings with superior mechanical attributes, thereby drawing significant research interest. Considering that the mechanical performance of a coating is fundamentally governed by its microstructural properties, a comprehensive review of CrN coatings fabricated through both techniques is presented. This review of recent literature aims to embark on an insightful comparison between DCMS and HiPIMS, followed by an examination of the microstructure of CrN coatings fabricated via both techniques. Furthermore, the exploration of the underlying factors contributing to the disparities in mechanical properties observed in CrN coatings is revealed. An assessment of the advantages and potential shortcomings of HiPIMS is discussed, offering insight into CrN coating fabrication.

7.
World J Diabetes ; 14(9): 1403-1411, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37771326

RESUMEN

BACKGROUND: Urinary sepsis is frequently seen in patients with diabetes mellitus (DM) complicated with upper urinary tract calculi (UUTCs). Currently, the known risk factors of urinary sepsis are not uniform. AIM: To analyze the risk factors of concurrent urinary sepsis in patients with DM complicated with UUTCs by logistic regression. METHODS: We retrospectively analyzed 384 patients with DM complicated with UUTCs treated in People's Hospital of Jincheng between February 2018 and May 2022. The patients were screened according to the inclusion and exclusion criteria, and 204 patients were enrolled. The patients were assigned to an occurrence group (n = 78) and a nonoccurrence group (n = 126). Logistic regression was adopted to analyze the risk factors for urinary sepsis, and a risk prediction model was established. RESULTS: Gender, age, history of lumbago and abdominal pain, operation time, urine leukocytes (U-LEU) and urine glucose (U-GLU) were independent risk factors for patients with concurrent urinary sepsis (P < 0.05). Risk score = 0.794 × gender + 0.941 × age + 0.901 × history of lumbago and abdominal pain - 1.071 × operation time + 1.972 × U-LEU + 1.541 × U-GLU. The occurrence group had notably higher risk scores than the nonoccurrence group (P < 0.0001). The area under the curve of risk score for forecasting concurrent urinary sepsis in patients was 0.801, with specificity of 73.07%, sensitivity of 79.36% and Youden index of 52.44%. CONCLUSION: Sex, age, history of lumbar and abdominal pain, operation time, ULEU and UGLU are independent risk factors for urogenic sepsis in diabetic patients with UUTC.

8.
Adv Sci (Weinh) ; 10(30): e2303785, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37715295

RESUMEN

Pervasive environmental contamination due to the uncontrolled dispersal of 2,4-dinitrotoluene (2,4-DNT) represents a substantial global health risk, demanding urgent intervention for the removal of this detrimental compound from affected sites and the promotion of ecological restoration. Conventional methodologies, however, are energy-intensive, susceptible to secondary pollution, and may inadvertently increase carbon emissions. In this study, a 2,4-DNT degradation module is designed, assembled, and validated in rice plants. Consequently, the modified rice plants acquire the ability to counteract the phytotoxicity of 2,4-DNT. The most significant finding of this study is that these modified rice plants can completely degrade 2,4-DNT into innocuous substances and subsequently introduce them into the tricarboxylic acid cycle. Further, research reveals that the modified rice plants enable the rapid phytoremediation of 2,4-DNT-contaminated soil. This innovative, eco-friendly phytoremediation approach for dinitrotoluene-contaminated soil and water demonstrates significant potential across diverse regions, substantially contributing to carbon neutrality and sustainable development objectives by repurposing carbon and energy from organic contaminants.


Asunto(s)
Carbono , Dinitrobencenos , Dinitrobencenos/análisis , Dinitrobencenos/metabolismo , Biodegradación Ambiental , Suelo
9.
Acta Pharm ; 73(3): 489-502, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37708962

RESUMEN

Colorectal cancer (CRC) is one of the most common types of malignant cancers worldwide. Although molecularly targeted therapies have significantly improved treatment outcomes, most of these target inhibitors are resistant. Novel inhibitors as potential anticancer drug candidates are still needed to be discovered. Therefore, in the present study, we synthesized a novel 4-(1,3,4-thiadiazole-2-ylthio)pyrimidine derivative (compound 4) using fragment- and structure-based techniques and then investigated the anticancer effect and underlying mechanism of anti-CRC. The results revealed that compound 4 significantly inhibited HCT116 cell proliferation with IC 50 values of 8.04 ± 0.94 µmol L-1 after 48 h and 5.52 ± 0.42 µmol L-1 after 72 h, respectively. Compound 4 also inhibited colony formation, migration, and invasion of HCT116 cells in a dose-dependent manner, as well as inducing cell apoptosis and arresting the cell cycle in the G2/M phase. In addition, compound 4 was able to inhibit the activation of the MEK/ERK signaling in HCT116 cells. And compound 4 yielded the same effects as the MEK inhibitor U0126 on cell apoptosis and MEK/ERK-related proteins. These findings suggested that compound 4 inhi bited cell proliferation and growth, and induced cell apoptosis, indicating its use as a novel and potent anticancer agent against CRC via the MEK/ERK signaling pathway.


Asunto(s)
Neoplasias Colorrectales , Transducción de Señal , Humanos , Proliferación Celular , Pirimidinas/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos
10.
Nano Lett ; 23(18): 8445-8453, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37677143

RESUMEN

Tellurium (Te) is an elemental semiconductor with a simple chiral crystal structure. Te in a two-dimensional (2D) form synthesized by a solution-based method shows excellent electrical, optical, and thermal properties. In this work, the chirality of hydrothermally grown 2D Te is identified and analyzed by hot sulfuric acid etching and high-angle tilted high-resolution scanning transmission electron microscopy. The gate-tunable nonlinear electrical responses, including the nonreciprocal electrical transport in the longitudinal direction and the nonlinear planar Hall effect in the transverse direction, are observed in 2D Te under a magnetic field. Moreover, the nonlinear electrical responses have opposite signs in left- and right-handed 2D Te due to the opposite spin polarizations ensured by the chiral symmetry. The fundamental relationship between the spin-orbit coupling and the crystal symmetry in two enantiomers provides a viable platform for realizing chirality-based electronic devices by introducing the degree of freedom of chirality into electron transport.

11.
Inorg Chem ; 62(37): 14896-14901, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37678159

RESUMEN

Volatile organic compounds (VOCs) have harmful effects on human health and the environment but detecting low levels of VOCs is challenging due to a lack of reliable biomarkers. However, incorporating gold nanoparticles (Au NPs) into metal-organic frameworks (MOFs) shows promise for VOC detection. In this study, we developed nanoscale Au@UiO-66 that exhibited surface-enhanced Raman scattering (SERS) activity even at very low levels of toluene vapors (down to 1.0 ppm) due to the thickness of the shell and strong π-π interactions between benzenyl-type linkers and toluene. The UiO-66 shell also increased the thermal stability of the Au NPs, preventing aggregation up to 550 °C. This development may be useful for sensitive detection of VOCs for environmental protection purposes.

12.
BMC Med Inform Decis Mak ; 23(1): 148, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537590

RESUMEN

BACKGROUND: High-dose methotrexate (HD-MTX) is a potent chemotherapeutic agent used to treat pediatric acute lymphoblastic leukemia (ALL). HD-MTX is known for cause delayed elimination and drug-related adverse events. Therefore, close monitoring of delayed MTX elimination in ALL patients is essential. OBJECTIVE: This study aimed to identify the risk factors associated with delayed MTX elimination and to develop a predictive tool for its occurrence. METHODS: Patients who received MTX chemotherapy during hospitalization were selected for inclusion in our study. Univariate and least absolute shrinkage and selection operator (LASSO) methods were used to screen for relevant features. Then four machine learning (ML) algorithms were used to construct prediction model in different sampling method. Furthermore, the performance of the model was evaluated using several indicators. Finally, the optimal model was deployed on a web page to create a visual prediction tool. RESULTS: The study included 329 patients with delayed MTX elimination and 1400 patients without delayed MTX elimination who met the inclusion criteria. Univariate and LASSO regression analysis identified eleven predictors, including age, weight, creatinine, uric acid, total bilirubin, albumin, white blood cell count, hemoglobin, prothrombin time, immunological classification, and co-medication with omeprazole. The XGBoost algorithm with SMOTE exhibited AUROC of 0.897, AUPR of 0.729, sensitivity of 0.808, specificity of 0.847, outperforming the other models. And had AUROC of 0.788 in external validation. CONCLUSION: The XGBoost algorithm provides superior performance in predicting the delayed elimination of MTX. We have created a prediction tool to assist medical professionals in predicting MTX metabolic delay.


Asunto(s)
Metotrexato , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Metotrexato/efectos adversos , Estudios Retrospectivos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Creatinina , Internet
13.
Ecotoxicol Environ Saf ; 262: 115287, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37567105

RESUMEN

2,4-Dinitrotoluene (2,4-DNT) as a common industrial waste has been massively discharged into the environment with industrial wastewater. Due to its refractory degradation, high toxicity, and bioaccumulation, 2,4-DNT pollution has become increasingly serious. Compared with the currently available physical and chemical methods, in situ bioremediation is considered as an economical and environmentally friendly approach to remove toxic compounds from contaminated environment. In this study, we relocated a complete degradation pathway of 2,4-DNT into Escherichia coli to degrade 2,4-DNT completely. Eight genes from Burkholderia sp. strain were re-synthesized by PCR-based two-step DNA synthesis method and introduced into E. coli. Degradation experiments revealed that the transformant was able to degrade 2,4-DNT completely in 12 h when the 2,4-DNT concentration reached 3 mM. The organic acids in the tricarboxylic acid cycle were detected to prove the degradation of 2,4-DNT through the artificial degradation pathway. The results proved that 2,4-DNT could be completely degraded by the engineered bacteria. In this study, the complete degradation pathway of 2,4-DNT was constructed in E. coli for the first time using synthetic biology techniques. This research provides theoretical and experimental bases for the actual treatment of 2,4-DNT, and lays a technical foundation for the bioremediation of organic pollutants.

14.
Phytomedicine ; 119: 154999, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37597361

RESUMEN

BACKGROUND: Epigallocatechin gallate (EGCG) has multiple biological effects such as anti-tumor multiple drug resistance, antioxidation and anti-inflammatory properties. Ferroptosis is the main driving factor of ischemic heart injury, thus inhibiting ferroptosis may prove to be an effective treatment strategy for cardiovascular diseases. However, the role of EGCG on ferroptosis in ischemic myocardium and underlying mechanisms remain uncertain. PURPOSE: This study was aimed to investigate the effects and potential mechanisms of EGCG on myocardial ischemic-induced ferroptosis both in vitro and in vivo. METHODS: Cardiomyocyte hypoxia model and mouse acute myocardial infarction (AMI) model were established in vitro and in vivo. MiR-450b-5p and ACSL4 silencing or overexpression plasmids were transfected, with or without EGCG pretreatment. Cell viability was determined by the CCK-8 assay. Hematoxylin and eosin (HE) staining and transmission electron microscopy (TEM) were used to evaluate the morphologic alterations. TTC staining was used to observe the infarction area, and echocardiography was adopted to appraise the heart function. Using flow cytometry, the presence of reactive oxygen species (ROS) was assessed. The content of cardiac troponin I (cTn I), glutathione (GSH), malondialdehyde (MDA), divalent iron ions (Fe2+) and superoxide dismutase (SOD) were detected using reagent kits. A luciferase activity assay was performed to assess the binding ability of miR-450b-5p to ACSL4. Expressions of related genes and proteins were measured by RT-qPCR and western blotting respectively. RESULTS: EGCG attenuated AMI-induced ferroptosis and improved myocardial ischemia injury, which was associated with reducing iron deposition and cTn I, inhibition of lipid peroxidation, decreasing TFR1 and ACSL4, and upregulating SLC7A11, FTH1 and GPX4. Meanwhile, EGCG pretreatment increased miR-450b-5p expression in ischemic myocardium. Further researches discovered that knockdown of miR-450b-5p partially compromised EGCG-generated protective effect in hypoxia HL-1 cells, while combination with miR-450b-5p mimic could strengthen the potency of EGCG on ischemic myocardium. The dual-luciferase test demonstrated that miR-450b-5p has binding to ACSL4. Furthermore, silencing of ACSL4 synergistically increased the cardioprotective effect of EGCG. More significantly, EGCG treatment regulated the ferroptosis-related proteins expression via miR-450b-5p/ACSL4 axis. CONCLUSION: In summary, the present study evidently demonstrated that EGCG attenuates myocardial ischemia injury by targeting ferroptosis. Our work revealed the role of miR-450b-5p/ACSL4 axis in AMI for the first time. Further, it also elucidated the molecular mechanisms of EGCG on inhibiting ferroptosis greatly depend on the miR-450b-5p/ACSL4 axis, suggesting that EGCG may act as a novel anti-ferroptosis agent and exert a therapeutic role in AMI.


Asunto(s)
Catequina , MicroARNs , Infarto del Miocardio , Isquemia Miocárdica , Animales , Ratones , Infarto del Miocardio/tratamiento farmacológico , Catequina/farmacología , Modelos Animales de Enfermedad , MicroARNs/genética
15.
Nutr Metab Cardiovasc Dis ; 33(10): 1878-1887, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37500347

RESUMEN

BACKGROUND AND AIM: Heart failure (HF) imposes significant global health costs due to its high incidence, readmission, and mortality rate. Accurate assessment of readmission risk and precise interventions have become important measures to improve health for patients with HF. Therefore, this study aimed to develop a machine learning (ML) model to predict 30-day unplanned readmissions in older patients with HF. METHODS AND RESULTS: This study collected data on hospitalized older patients with HF from the medical data platform of Chongqing Medical University from January 1, 2012, to December 31, 2021. A total of 5 candidate algorithms were selected from 15 ML algorithms with excellent performance, which was evaluated by area under the operating characteristic curve (AUC) and accuracy. Then, the 5 candidate algorithms were hyperparameter tuned by 5-fold cross-validation grid search, and performance was evaluated by AUC, accuracy, sensitivity, specificity, and recall. Finally, an optimal ML model was constructed, and the predictive results were explained using the SHapley Additive exPlanations (SHAP) framework. A total of 14,843 older patients with HF were consecutively enrolled. CatBoost model was selected as the best prediction model, and AUC was 0.732, with 0.712 accuracy, 0.619 sensitivity, and 0.722 specificity. NT.proBNP, length of stay (LOS), triglycerides, blood phosphorus, blood potassium, and lactate dehydrogenase had the greatest effect on 30-day unplanned readmission in older patients with HF, according to SHAP results. CONCLUSIONS: The study developed a CatBoost model to predict the risk of unplanned 30-day special-cause readmission in older patients with HF, which showed more significant performance compared with the traditional logistic regression model.


Asunto(s)
Insuficiencia Cardíaca , Readmisión del Paciente , Humanos , Anciano , Estudios Retrospectivos , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología , Insuficiencia Cardíaca/terapia , Tiempo de Internación , Modelos Logísticos
16.
Int J Ophthalmol ; 16(6): 921-927, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332544

RESUMEN

AIM: To analyze the efficacy and safety of subthreshold micropulse laser (SML) in the treatment of acute central serous chorioretinopathy (CSC). METHODS: This is a retrospective case analysis study. Totally 58 eyes of 58 patients were enrolled, and they were divided into different groups. And 39 patients were treated with SML (SML group) and 19 patients were only observed (observation group). The follow-up period was 3mo after diagnosis. The best corrected visual acuity (BCVA), central retinal thickness (CRT), superficial retinal vascular density (SRVD), deep retinal vascular density (DRVD), the superficial and deep foveal avascular zone (FAZ) area, retinal light sensitivity (RLS), perfusion area of choroidal capillary layer (CCL), subfoveal choroidal thickness (SFCT) and fundus autofluorescence (FAF) were investigated. RESULTS: The BCVA, CRT, SRVD, DRVD, the superficial and deep FAZ area, RLS, SFCT of SML group were significantly improved at 3mo (all P<0.05). In the observation group, only CRT, DRVD and SFCT were improved (all P<0.05). Other research items in the observation group were not significantly different from baseline (all P>0.05). At the last follow-up, the BCVA and RLS in the SML group were better than those in the observation group, and CRT was lower, SRVD and DRVD, perfusion area of CCL were larger (all P<0.05). On FAF, no change of treatment spots was found after treatment. No structural laser damage was observed on optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA), and no choroidal neovascularization was observed. CONCLUSION: SML treatment of acute CSC can improve BCVA, RLS, and perfusion area of CCL, reduce CRT, increase SRVD and DRVD, and is safe.

17.
Pharmacogenet Genomics ; 33(5): 101-110, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37261937

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by deficits in social communication and restrictive behaviors. Mouse nerve growth factor (mNGF), a neurotrophic factor, is critical for neuronal growth and survival, and the mNGF treatment is considered a promising therapy for neurodegeneration. In light of this, we aimed to evaluate the effect of mNGF on neurological function in ASD. METHODS: An ASD rat model was established by intraperitoneal injection of valproic acid (VPA). Social behavior, learning, and memory of the rats were measured. TdT-mediated dUTP Nick-end labeling and Nissl assays were performed to detect neuronal apoptosis and survival in the hippocampus and prefrontal cortex. Apoptosis-related proteins and oxidative stress markers were detected. RESULTS: mNGF improved locomotor activity, exploratory behavior, social interaction, and spatial learning and memory in VPA-induced ASD rats. In the hippocampus and prefrontal cortex, mNGF suppressed neuronal apoptosis, increased the number of neurons, superoxide dismutase, and glutathione levels, and decreased reactive oxygen species, nitric oxide, TNF-α, and IL-1ß levels compared with the VPA group. In addition, mNGF increased the levels of Bcl-2, p-phosphoinositide-3-kinase (PI3K), and p-serine/threonine kinase (Akt), and decreased the levels of Bax and cleaved caspase-3, while the PI3K inhibitor LY294002 reversed these effects. CONCLUSION: These data suggest that mNGF suppressed neuronal apoptosis and ameliorated the abnormal behaviors in VPA-induced ASD rats, in part, by activating the PI3K/Akt signaling pathway.


Asunto(s)
Trastorno del Espectro Autista , Ácido Valproico , Ratas , Animales , Ratones , Humanos , Ácido Valproico/efectos adversos , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas/efectos adversos , Proteínas Serina-Treonina Quinasas/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasa/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Transducción de Señal , Apoptosis , Fosfatidilinositoles/efectos adversos , Serina/efectos adversos , Modelos Animales de Enfermedad
18.
Porcine Health Manag ; 9(1): 24, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221604

RESUMEN

BACKGROUND: Stress, herd transfer, and food changes experienced by nursery and fattening pigs can lead to reduced performance, reduced digestion and absorption, and impaired intestinal health. Given the role of essential oils in relieving stress and improving animal welfare, we hypothesized that essential oils may improve pig performance via promoting gut health and gut homeostasis laid by EOs supplementation during nursery continuously impacts performance in fattening pigs. RESULTS: A total of 100 piglets (Landrace × Large White; weighted 8.08 ± 0.34 kg, weaned at d 28) were randomly selected and divided into 2 treatments: (1) basal diet (Con); (2) basal diet supplement with 0.1% complex essential oils (CEO). The experiment period was 42 days. Then weaned piglets' growth performance and indications of intestinal health were assessed. Compared to the Con group, dietary supplemented CEO enhanced BW at 14 d (P < 0.05), and increased ADG during 1 ~ 14 d and 1 ~ 42 d (P < 0.05). Furthermore, CEO group had lower FCR during 1 ~ 42 d (P < 0.05). The CEO group also showed higher VH and VH:CD in duodenum and ileum (P < 0.05). Additionally, dietary CEO supplementation improved gut barrier function, as manifested by increased the mRNA expression of tight-junction protein and decreased serum DAO, ET and D-LA levels (P < 0.05). Finally, CEO supplementation alleviated gut inflammation, increased the activity of digestive enzymes. Importantly, piglets supplemented with CEOs during nursery also had better performance during fattening, suggesting that the establishment of intestinal health will also continuously affect subsequent digestion and absorption capacity. In short, dietary supplemented CEO improved performance and gut health via modulating increased intestine absorptive area, barrier integrity, digestive enzyme activity, and attenuating intestine inflammation. Meanwhile, essential oil supplementation during the nursery period also had a favorable effect on the performance of growing pigs. CONCLUSIONS: Therefore, the strategy of adding CEO to pig diets as a growth promoter and enhancing intestinal health is feasible.

19.
Chem Asian J ; 18(10): e202300192, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37015878

RESUMEN

The heterocyclic tetrazole, a well-established bioisosteric replacement of carboxylic acid, plays an important role in medicinal chemistry. To deepen the functional understanding of tetrazoles in chemical sciences, it is essential to investigate the noncovalent interactions between the tetrazole ring and aromatic rings. Here, we report synthetic, spectroscopic, structural and quantum chemical analyses on specially designed 2-arylphenyl-1H-tetrazoles to study the underlying noncovalent interactions between the tetrazole ring and the neighboring aromatic ring possessing substituents at para/meta position. pKa values and proton affinities of 2-arylphenyl-1H-tetrazoles correlate well with Hammett sigma values of para-substituents at the flanking aromatic ring. Molecular orbital and energy decomposition analyses reveal that through-space NH-π interactions and π-π interactions contribute to the trend of pKa values and proton affinities of 2-arylphenyl-1H-tetrazoles. The electrostatic interaction between tetrazole/tetrazolide interacting with the aromatic rings appears responsible for the observed acidity trends. These results will be helpful for the rational design of tetrazole-based drugs and materials.

20.
Neuroimage ; 270: 119989, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36858331

RESUMEN

Additional neural substance for reading in a second language has been reported by prior studies. However, to date, there has been little investigation into whether and how the brain's adaptation to a second language is induced by specific linguistic tasks or is a general effect during reading in a new language. To address this issue, our study investigated Chinese children learning English as a second language by combining cross-sectional and longitudinal Functional Magnetic Resonance Imaging (fMRI) studies. We compared brain activation across four reading tasks, orthographic tasks and phonological tasks in Chinese (the first language, L1) and English (the second language, L2). By comparing the activation pattern across languages, we observed greater activation in the left inferior parietal lobule (LIPL) in English compared to Chinese, suggesting a functional preference of the LIPL to L2. In addition, greater correlation between LIPL-related FC and L2 was mainly observed in the phonological task, indicating that LIPL could be associated with phonological processing. Moreover, a proportion of the children were enrolled in an 8-week phonological-based reading-training program. We observed significant functional plasticity of the LIPL elicited by this training program only in the English phonological task and not in the orthographic task, further substantiating that the additional requirements of the LIPL in L2 are mainly associated with phonological processing. The findings provide new insights into understanding the functional contribution of the LIPL to reading in a second language.


Asunto(s)
Multilingüismo , Lectura , Niño , Humanos , Mapeo Encefálico , Estudios Transversales , Encéfalo/fisiología , Lenguaje , Lóbulo Parietal/diagnóstico por imagen , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA