RESUMEN
To elucidate the role of nitric oxide synthase (NOS), which produces the free radical nitric oxide (NO), and nicotinamide adenine dinucleotide phosphate oxidase (NOX), which produces the superoxide anion (O2-), in the innate immunity of Eriocheir sinensis, the full lengths of the NOS and NOX genes were cloned via rapid amplification of the cDNA ends and then expressed in the prokaryotic form to obtain the recombinant proteins, NOS-HIS and NOX-HIS. Through bacterial binding and stimulation experiments, the molecular mechanisms of NOS and NOX in the innate immunity of E. sinensis were explored. Based on the results, NOS and NOX were 5900 bp and 4504 bp long, respectively, and were evolutionarily conserved. Quantitative real-time PCR revealed that NOS and NOX were expressed in all studied tissues, and both were expressed in the highest amounts in hemocytes. NOS-HIS and NOX-HIS could bind to bacteria with different binding powers; their binding ability to gram-positive bacteria was higher than that of binding to gram-negative bacteria. After stimulation with Aeromonas hydrophila, NOS expression was significantly up-regulated at 3, 6, and 48 h, and NOX expression was significantly down-regulated at 3, 12, 24, and 48 h. After bacterial stimulation, the NOS enzyme activity in the serum of E. sinensis was also significantly up-regulated at 6 and 48 h, and the NOX enzyme activity was significantly down-regulated at 12 and 48 h, aligning with the gene expression trend. Moreover, the related free radical molecules, NO, O2-, and H2O2, tended to decrease after bacterial stimulation. Overall, the gene expression and enzyme activity of NOS and NOX had been changed respectively, and the contents of a series of free radical molecules (NO, O2- and H2O2) were induced in E. sinensis after bacterial stimulation, which then exert antibacterial immunity.
Asunto(s)
Braquiuros , Peróxido de Hidrógeno , Animales , Peróxido de Hidrógeno/farmacología , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Antibacterianos/farmacología , Proteínas Recombinantes/genética , Bacterias/metabolismo , Braquiuros/genética , Inmunidad Innata , Filogenia , Proteínas de Artrópodos/genética , Hemocitos/metabolismoRESUMEN
BACKGROUND: As a potent mediator of hypothermic neuroprotection, the cold-inducible protein RBM3 is characterized with one RNA-recognition motifs (RRM) and one arginine-glycine-rich (RGG) domain. It is known that these conserved domains are required for nuclear localization in some RNA-binding proteins. However, little is known about the actual role of RRM and RGG domains in subcellular localization of RBM3. METHODS: To clarify it, various mutants of human Rbm3 gene were constructed. Plasmids were transfected into cells and the localization of RBM3 protein and its varias mutants in cells and role in neuroprotection. RESULTS: In human neuroblastoma SH-SY5Y cells, either a truncation of RRM domain (aa 1-86) or RGG domain (aa 87-157) led to an obvious cytoplasmic distribution, compared to a predominant nuclear localization of whole RBM3 protein (aa 1-157). In contrast, mutants in several potential phosphorylated sites of RBM3, including Ser102, Tyr129, Ser147, and Tyr155, did not alter the nuclear localization of RBM3. Similarly, mutants in two Di-RGG motif sites also did not affect the subcellular distribution of RBM3. Lastly, the role of Di-RGG motif in RGG domains was further investigated. The mutant of double arginines in either Di-RGG motif-1 (Arg87/90) or -2 (Arg99/105) exhibited a higher cytoplasmic localization, indicating that both Di-RGG motifs are required for nucleic localization of RBM3. CONCLUSIONS: Our data suggest that RRM and RGG domains are both required for the nuclear localization of RBM3, with two Di-RGG domain being crucial for nucleocytoplasmic shuttling of RBM3.
Asunto(s)
Neuroprotección , Proteínas de Unión al ARN , Humanos , Arginina , Citoplasma , Proteínas de Unión al ARN/genética , Línea Celular TumoralRESUMEN
Neural cell adhesion molecule (NCAM) is involved in cell multi-directional differentiation, but its role in osteoblast differentiation is still poorly understood. In the present study, we investigated whether and how NCAM regulates osteoblastic differentiation. We found that NCAM silencing inhibited osteoblast differentiation in pre-osteoblastic MC3T3-E1 cells. The function of NCAM was further confirmed in NCAM-deficient mesenchymal stem cells (MSCs), which also had a phenotype with reduced osteoblastic potential. Moreover, NCAM silencing induced decrease of Wnt/ß-catenin and Akt activation. The Wnt inhibitor blocked osteoblast differentiation, and the Wnt activator recovered osteoblast differentiation in NCAM-silenced MC3T3-E1 cells. We lastly demonstrated that osteoblast differentiation of MC3T3-E1 cells was inhibited by the PI3K-Akt inhibitor. In conclusion, these results demonstrate that NCAM silencing inhibited osteoblastic differentiation through inactivation of Wnt/ß-catenin and PI3K-Akt signaling pathways.
Asunto(s)
Diferenciación Celular , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Osteoblastos/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animales , Línea Celular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Moléculas de Adhesión de Célula Nerviosa/genética , Osteoblastos/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Proteínas Wnt/genética , beta Catenina/genéticaRESUMEN
miR-206 plays an essential role in repressing the growth of multiple cancer cells. Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the pentose phosphate pathway. However, it is mostly unknown whether G6PD is associated with miR-206-mediated growth repression of hepatocellular carcinoma (HCC) cells. In this study, we found that the expression of G6PD was upregulated in HCC patients and cell lines, whereas the expression of miR-206 was negatively associated with the clinical staging criterion of primary liver cancer. Overexpression of G6PD increased lipid accumulation and promoted cell proliferation. Conversely, inhibition of G6PD expression decreased lipid accumulation and suppressed cell proliferation. Moreover, miR-206 could directly bind to G6PD mRNA 3´-UTR and downregulate G6PD level. Overexpression of G6PD significantly attenuated the miR-206 mimic-mediated suppression of lipid accumulation and cell proliferation. In summary, the results demonstrated that miR-206 could inhibit lipid accumulation and growth of HCC cells by targeting G6PD, suggesting that the miR-206-G6PD axis may be a promising target for treating HCC.