Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 62: 102675, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36933392

RESUMEN

The decreased antioxidant capacity in the retinal pigment epithelium (RPE) is the hallmark of retinal degenerative diseases including age-related macular degeneration (AMD). Nevertheless, the exact regulatory mechanisms underlying the pathogenesis of retinal degenerations remain largely unknown. Here we show in mice that deficiencies in Dapl1, a susceptibility gene for human AMD, impair the antioxidant capacity of the RPE and lead to age-related retinal degeneration in the 18-month-old mice homozygous for a partial deletion of Dapl1. Dapl1-deficiency is associated with a reduction of the RPE's antioxidant capacity, and experimental re-expression of Dapl1 reverses this reduction and protects the retina from oxidative damage. Mechanistically, DAPL1 directly binds the transcription factor E2F4 and inhibits the expression of MYC, leading to upregulation of the transcription factor MITF and its targets NRF2 and PGC1α, both of which regulate the RPE's antioxidant function. When MITF is experimentally overexpressed in the RPE of DAPL1 deficient mice, antioxidation is restored and retinas are protected from degeneration. These findings suggest that the DAPL1-MITF axis functions as a novel regulator of the antioxidant defense system of the RPE and may play a critical role in the pathogenesis of age-related retinal degenerative diseases.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Animales , Ratones , Antioxidantes/metabolismo , Línea Celular , Degeneración Macular/genética , Degeneración Macular/patología , Proteínas de la Membrana/metabolismo , Estrés Oxidativo , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Factores de Transcripción/metabolismo
2.
Redox Biol ; 34: 101537, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32361183

RESUMEN

Oxidative damage is one of the major contributors to retinal degenerative diseases such as age-related macular degeneration (AMD), while RPE mediated antioxidant defense plays an important role in preventing retinopathies. However, the regulatory mechanisms of antioxidant signaling in RPE cells are poorly understood. Here we show that transcription factor MITF regulates the antioxidant response in RPE cells, protecting the neural retina from oxidative damage. In the oxidative stress-induced retinal degeneration mouse model, retinal degeneration in Mitf+/- mice is significantly aggravated compared to WT mice. In contrast, overexpression of Mitf in Dct-Mitf transgenic mice and AAV mediated overexpression in RPE cells protect the neural retina against oxidative damage. Mechanistically, MITF both directly regulates the transcription of NRF2, a master regulator of antioxidant signaling, and promotes its nuclear translocation. Furthermore, specific overexpression of NRF2 in Mitf+/- RPE cells activates antioxidant signaling and partially protects the retina from oxidative damage. Taken together, our findings demonstrate the regulation of NRF2 by MITF in RPE cells and provide new insights into potential therapeutic approaches for prevention of oxidative damage diseases.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Animales , Degeneración Macular/genética , Ratones , Factor de Transcripción Asociado a Microftalmía , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Degeneración Retiniana/genética , Epitelio Pigmentado de la Retina/metabolismo
3.
Elife ; 92020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32242818

RESUMEN

Photoreceptor degeneration is a major cause of blindness and a considerable health burden during aging but effective therapeutic or preventive strategies have not so far become readily available. Here, we show in mouse models that signaling through the tyrosine kinase receptor KIT protects photoreceptor cells against both light-induced and inherited retinal degeneration. Upon light damage, photoreceptor cells upregulate Kit ligand (KITL) and activate KIT signaling, which in turn induces nuclear accumulation of the transcription factor NRF2 and stimulates the expression of the antioxidant gene Hmox1. Conversely, a viable Kit mutation promotes light-induced photoreceptor damage, which is reversed by experimental expression of Hmox1. Furthermore, overexpression of KITL from a viral AAV8 vector prevents photoreceptor cell death and partially restores retinal function after light damage or in genetic models of human retinitis pigmentosa. Hence, application of KITL may provide a novel therapeutic avenue for prevention or treatment of retinal degenerative diseases.


Asunto(s)
Células Fotorreceptoras de Vertebrados/efectos de la radiación , Degeneración Retiniana/prevención & control , Factor de Células Madre/fisiología , Animales , Modelos Animales de Enfermedad , Hemo-Oxigenasa 1/análisis , Luz , Proteínas de la Membrana/análisis , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/fisiología , Proteínas Proto-Oncogénicas c-kit/fisiología , Degeneración Retiniana/etiología , Degeneración Retiniana/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA