Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 558
Filtrar
1.
Front Mol Neurosci ; 17: 1394932, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39169952

RESUMEN

Neurological diseases have consistently represented a significant challenge in both clinical treatment and scientific research. As research has progressed, the significance of mitochondria in the pathogenesis and progression of neurological diseases has become increasingly prominent. Mitochondria serve not only as a source of energy, but also as regulators of cellular growth and death. Both oxidative stress and mitophagy are intimately associated with mitochondria, and there is mounting evidence that mitophagy and oxidative stress exert a pivotal regulatory influence on the pathogenesis of neurological diseases. In recent years, there has been a notable rise in the prevalence of cerebral ischemia/reperfusion injury (CI/RI), vascular dementia (VaD), and Alzheimer's disease (AD), which collectively represent a significant public health concern. Reduced levels of mitophagy have been observed in CI/RI, VaD and AD. The improvement of associated pathology has been demonstrated through the increase of mitophagy levels. CI/RI results in cerebral tissue ischemia and hypoxia, which causes oxidative stress, disruption of the blood-brain barrier (BBB) and damage to the cerebral vasculature. The BBB disruption and cerebral vascular injury may induce or exacerbate VaD to some extent. In addition, inadequate cerebral perfusion due to vascular injury or altered function may exacerbate the accumulation of amyloid ß (Aß) thereby contributing to or exacerbating AD pathology. Intravenous tissue plasminogen activator (tPA; alteplase) and endovascular thrombectomy are effective treatments for stroke. However, there is a narrow window of opportunity for the administration of tPA and thrombectomy, which results in a markedly elevated incidence of disability among patients with CI/RI. It is regrettable that there are currently no there are still no specific drugs for VaD and AD. Despite the availability of the U.S. Food and Drug Administration (FDA)-approved clinical first-line drugs for AD, including memantine, donepezil hydrochloride, and galantamine, these agents do not fundamentally block the pathological process of AD. In this paper, we undertake a review of the mechanisms of mitophagy and oxidative stress in neurological disorders, a summary of the clinical trials conducted in recent years, and a proposal for a new strategy for targeted treatment of neurological disorders based on both mitophagy and oxidative stress.

2.
Front Psychol ; 15: 1398163, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39171221

RESUMEN

Leveraging the trait activation theory, the study constructs a model featuring moderated chain mediation to explore how perceived overqualification influences employee innovation performance. After conducting two surveys with Chinese employees, this study collects 363 valid questionnaires. The findings reveal that perceived overqualification is positively related to employee innovation performance. Both self-oriented perfectionism and job crafting are partial mediators between perceived overqualification and innovation performance, and they collectively play a chain mediating role. Furthermore, independent self-construction positively moderates the link between perceived overqualification and self-oriented perfectionism, and informal status positively moderates the relationship between job crafting and employee innovation performance. Additionally, the indirect influence of perceived overqualification on employee innovation performance is moderated by independent self-construction and informal status. This study adds to the current body of literature on perceived overqualification and offers practical implications for organizations aiming to enhance innovation performance.

3.
Neurol Res ; : 1-11, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087592

RESUMEN

OBJECTIVES: Stroke is a leading cause of death in Taiwan. Poor public knowledge of stroke may lead to delays in prehospital arrival, resulting in unfavorable prognoses. Studies have investigated public knowledge of stroke and highlighted the importance of stroke education, however, few such studies have been conducted in Taiwan. This study assessed the changes in public knowledge of stroke between 2012 and 2020 by conducting a survey during two World Stroke Day events. Furthermore, this study identified areas where educational efforts may have been insufficient. MATERIALS & METHODS: Questionnaires were distributed to the participants of 2012 and 2020 World Stroke Day events in Taiwan. In total, 328 and 336 questionnaires were completed, respectively. Stroke literacy and knowledge were analyzed between 2012 and 2020. Data were analyzed using the chi-square test or independent t-test. p < 0.05 indicates statistical significance. RESULTS: Hypertension was the most recognized risk factor for stroke in both years (p < 0.001), and recognition of most of the given risk factors significantly increased. In addition, recognition of more than half of the stroke warning signs significantly increased, awareness of the correct acute stroke response also increased (p < 0.001), and overall stroke literacy in Taiwan increased (p = 0.001). CONCLUSION: Stroke literacy and knowledge in Taiwan have improved significantly between 2012 and 2020, but many people still lack adequate stroke knowledge and awareness. Government health department must take this sort of intervention continually (campaigns) and novel approaches (e.g. board game…) to improve stroke literacy and knowledge in public health. REGISTRATION ID: N202109072, approved by the Joint Institutional Review Board of Taipei Medical University on 2021/11/02.

4.
Medicine (Baltimore) ; 103(31): e39160, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093779

RESUMEN

RATIONALE: Amid the pervasive deployment of imidacloprid, the incidence of poisoning from this compound has risen markedly. Those afflicted with imidacloprid poisoning typically exhibit symptoms ranging from headaches, dizziness, nausea, and abdominal pain, to impaired consciousness and breathlessness, yet instances of ocular paralysis induced by this toxin have not previously been documented. PATIENT CONCERNS: When the pesticide spray inadvertently made contact with the patient's eyes, they were seared with a burning sensation and discomfort. Subsequent to this incident, on the second day, the individual began to experience diplopia in the right eye and found it arduous to elevate his eyelids, indicating a challenge in achieving full extension. DIAGNOSES: Based on the medical history, symptoms, and signs, the patient was diagnosed with oculomotor nerve palsy caused by imidacloprid. INTERVENTIONS: The treatment involved intravenous dexamethasone to reduce inflammatory response in the eye tissue; oral pantoprazole enteric-coated tablets to suppress acid production and protect the stomach; Xuesaitong administered intravenously to improve blood supply to the eye and promote metabolism of toxins; vitamin C, cobamamide, and vitamin B1 for nerve nutrition and antioxidant effects; local application of tobramycin-dexamethasone eye drops for anti-inflammatory purposes; and repeated flushing of the conjunctival sac with saline. Finally, the patient improved and was discharged. OUTCOMES: After active treatment, the patient finally improved diplopia and ptosis. LESSONS: This report marks the first documentation of oculomotor nerve palsy induced by imidacloprid, featuring diplopia, and blepharoptosis without substantial limitation of ocular motility. Following therapeutic intervention, the patient showed marked improvement and was discharged from the hospital, providing a point of reference for the treatment of analogous cases in future clinical practice. It also serves as a reminder for the public to take appropriate precautions when using imidacloprid.


Asunto(s)
Neonicotinoides , Nitrocompuestos , Enfermedades del Nervio Oculomotor , Humanos , Neonicotinoides/efectos adversos , Nitrocompuestos/efectos adversos , Masculino , Enfermedades del Nervio Oculomotor/inducido químicamente , Enfermedades del Nervio Oculomotor/diagnóstico , Insecticidas/efectos adversos
5.
Adv Mater ; : e2403921, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101290

RESUMEN

Radiotherapy (RT), essential for treating various cancers, faces challenges from tumor hypoxia, which induces radioresistance. A tumor-targeted "prosthetic-Arginine" coassembled nanozyme system, engineered to catalytically generate nitric oxide (NO) and oxygen (O2) in the tumor microenvironment (TME), overcoming hypoxia and enhancing radiosensitivity is presented. This system integrates the prosthetic heme of nitric oxide synthase (NOS) and catalase (CAT) with NO-donating Fmoc-protected Arginine and Ru3+ ions, creating HRRu nanozymes that merge NOS and CAT functionalities. Surface modification with human heavy chain ferritin (HFn) improves the targeting ability of nanozymes (HRRu-HFn) to tumor tissues. In the TME, strategic arginine incorporation within the nanozyme allows autonomous O2 and NO release, triggered by endogenous hydrogen peroxide, elevating NO and O2 levels to normalize vasculature and improve blood perfusion, thus mitigating hypoxia. Employing the intrinsic O2-transporting ability of heme, HRRu-HFn nanozymes also deliver O2 directly to the tumor site. Utilizing esophageal squamous cell carcinoma as a tumor model, the studies reveal that the synergistic functions of NO and O2 production, alongside targeted delivery, enable the HRRu-HFn nanozymes to combat tumor hypoxia and potentiate radiotherapy. This HRRu-HFn nanozyme based approach holds the potential to reduce the radiation dose required and minimize side effects associated with conventional radiotherapy.

6.
Expert Opin Drug Saf ; : 1-8, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39096111

RESUMEN

OBJECTIVE: To explore safety differences and perform a gender-based analysis of adverse events related to gemcitabine and Bacillus Calmette-Guérin (BCG) vaccine using the U.S. FDA Adverse Event Reporting System (FAERS) database. METHODS: Using the Reporting Odds Ratio (ROR) and Proportional Reporting Ratio (PRR) methods, adverse events associated with gemcitabine and BCG were mined from FAERS database reports spanning from Q1 2004 to Q3 2023. RESULTS: The study extracted 37,855 reports with gemcitabine and 5,455 reports with BCG as the primary suspected drugs. Adverse events were more prevalent in males (male-to-female ratio: gemcitabine 1.10, BCG 4.25). Differences in high-frequency adverse events among the top 20 signals were detected for both drugs. Both drugs affected similar organ systems, including potential pulmonary, ocular, and renal toxicity, with gemcitabine showing a broader range of adverse events. Gender analysis revealed fewer adverse reactions to gemcitabine in females, while males had fewer adverse reactions to BCG. CONCLUSION: Differences in high-frequency adverse events between gemcitabine and BCG, including some not listed on drug labels, were observed. Both drugs affect similar organ systems, with gemcitabine showing a broader range of adverse events. Gender differences in adverse events were notable.

7.
J Mater Chem B ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39138924

RESUMEN

Fluoroquinolones are a widely used class of antibiotics, with a large variety, which are frequently monitored in the aqueous environment, threatening ecological and human health. To date, effective degradation of fluoroquinolone antibiotics remains a major challenge. Focused on the broad-spectrum degradation of fluoroquinolone antibiotics, a novel biomimetic peroxidase nanozyme named Hemin-His-Fe (HHF)-peroxidase nanozyme was synthesized through a green and rapid "one-pot" method involving hemin, Fmoc-L-His and Fe2+ as precursors. After systematic optimization of the reaction conditions, fluoroquinolone antibiotics can be degraded by the HHF-peroxidase nanozyme when supplemented with H2O2 in acidic environments. Through validation and analysis, it was proved that the generated strong oxidative hydroxyl radicals are the main active species in the degradation process. In addition, it was verified that this method shows great universal applicability in real water samples.

8.
Sci China Life Sci ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39190126

RESUMEN

The development of STING inhibitors for the treatment of STING-related inflammatory diseases continues to encounter significant challenges. The activation of STING is a multi-step process that includes binding with cGAMP, self-oligomerization, and translocation from the endoplasmic reticulum to the Golgi apparatus, ultimately inducing the expression of IRF3 and NF-κB-mediated interferons and inflammatory cytokines. It has been demonstrated that disruption of any of these steps can effectively inhibit STING activation. Traditional structure-based drug screening methodologies generally focus on specific binding sites. In this study, a TransformerCPI model based on protein primary sequences and independent of binding sites is employed to identify compounds capable of binding to the STING protein. The natural product Licochalcone D (LicoD) is identified as a potent and selective STING inhibitor. LicoD does not bind to the classical ligand-binding pocket; instead, it covalently modifies the Cys148 residue of STING. This modification inhibits STING oligomerization, consequently suppressing the recruitment of TBK1 and the nuclear translocation of IRF3 and NF-κB. LicoD treatment ameliorates the inflammatory phenotype in Trex1-1- mice and inhibits the progression of DSS-induced colitis and AOM/DSS-induced colitis-associated colon cancer (CAC). In summary, this study reveals the potential of LicoD in treating STING-driven inflammatory diseases. It also demonstrates the utility of the TransformerCPI model in discovering allosteric compounds beyond the conventional binding pockets.

9.
Int Immunopharmacol ; 141: 112882, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39151383

RESUMEN

Recent research found artesunate could inhibit ocular fibrosis; however, the underlying mechanisms are not fully known. Since the ocular fibroblast is the main effector cell in fibrosis, we hypothesized that artesunate may exert its protective effects by inhibiting the fibroblasts proliferation. TGF-ß1-induced ocular fibroblasts and glaucoma filtration surgery (GFS)-treated rabbits were used as ocular fibrotic models. Firstly, we analyzed fibrosis levels by assessing the expression of fibrotic marker proteins, and used Ki67 immunofluorescence, EdU staining, flow cytometry to determine cell cycle status, and SA-ß-gal staining to assess cellular senescence levels. Then to predict target genes and pathways of artesunate, we analyzed the differentially expressed genes and enriched pathways through RNA-seq. Western blot and immunohistochemistry were used to detect the pathway-related proteins. Additionally, we validated the dependence of artesunate's effects on HO-1 expression through HO-1 siRNA. Moreover, DCFDA and MitoSOX fluorescence staining were used to examine ROS level. We found artesunate significantly inhibits the expression of fibrosis-related proteins, induces cell cycle arrest and cellular senescence. Knocking down HO-1 in fibroblasts with siRNA reverses these regulatory effects of artesunate. Mechanistic studies show that artesunate significantly inhibits the activation of the Cyclin D1/CDK4-pRB pathway, induces an increase in cellular and mitochondrial ROS levels and activates the Nrf2/HO-1 pathway. In conclusion, the present study identifies that artesunate induces HO-1 expression through ROS to activate the antioxidant Nrf2/HO-1 pathway, subsequently inhibits the cell cycle regulation pathway Cyclin D1/CDK4-pRB in an HO-1-dependent way, induces cell cycle arrest and senescence, and thereby resists periorbital fibrosis.

10.
ACS Appl Mater Interfaces ; 16(31): 41244-41256, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39041930

RESUMEN

In pursuing high stability and power conversion efficiency for organic photovoltaics (OPVs), a sequential deposition (SD) approach to fabricate active layers with p-i-n structures (where p, i, and n represent the electron donor, mixed donor:acceptor, and electron acceptor regions, respectively, distinctively different from the bulk heterojunction (BHJ) structure) has emerged. Here, we present a novel approach that by incorporating two polymer donors, PBDBT-DTBT and PTQ-2F, and one small-molecule acceptor, BTP-3-EH-4Cl, into the active layer with sequential deposition, we formed a device with nanometer-scale twin p-i-n structured active layer. The twin p-i-n PBDBT-DTBT:PTQ-2F/BTP-3-EH-4Cl device involved first depositing a PBDBT-DTBT:PTQ-2F blend under layer and then a BTP-3-EH-4Cl top layer and exhibited an improved power conversion efficiency (PCE) value of 18.6%, as compared to the 16.4% for the control BHJ PBDBT-DTBT:PTQ-2F:BTP-3-EH-4Cl device or 16.6% for the single p-i-n PBDBT-DTBT/BTP-3-EH-4Cl device. The PCE enhancement resulted mainly from the twin p-i-n active layer's multiple nanoscale charge carrier pathways that contributed to an improved fill factor and faster photocurrent generation based on transient absorption studies. The PBDBT-DTBT:PTQ-2F/BTP-3-EH-4Cl film possessed a vertical twin p-i-n morphology that was revealed through secondary ion mass spectrometry and synchrotron grazing-incidence small-angle X-ray scattering analyses. The thermal stability (T80) at 85 °C of the twin p-i-n PBDBT-DTBT:PTQ-2F/BTP-3-EH-4Cl device surpassed that of the single p-i-n PBDBT-DTBT/BTP-3-EH-4Cl devices (906 vs 196 h). This approach of providing a twin p-i-n structure in the active layer can lead to substantial enhancements in both the PCE and stability of organic photovoltaics, laying a solid foundation for future commercialization of the organic photovoltaics technology.

11.
Adv Healthc Mater ; : e2401600, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011808

RESUMEN

The prevalence of retinal neovascular diseases necessitates novel treatments beyond current therapies like laser surgery or anti-VEGF treatments, which often carry significant side effects. A novel therapeutic approach is introduced using copper-containing layered double hydroxides (Cu-LDH) nanozymes integrated with nitric oxide-releasing molecules (GSHNO), forming Cu-LDH@GSHNO aimed at combating oxidative stress within the retinal vascular system. Combination of synthetic chemistry and biological testing, Cu-LDH@GSHNO are synthesized, characterized, and assessed for curative effect in HUVECs and an oxygen-induced retinopathy (OIR) mouse model. The results indicate that Cu-LDH@GSHNO demonstrates SOD-CAT cascade catalytic ability, accompanied with GSH and nitric oxide-releasing capabilities, which significantly reduces oxidative cell damage and restores vascular function, presenting a dual-function strategy that enhances treatment efficacy and safety for retinal vascular diseases. The findings encourage further development and clinical exploration of nanozyme-based therapies, promising a new horizon in therapeutic approaches for managing retinal diseases driven by oxidative stress.

12.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3583-3590, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39041130

RESUMEN

To investigate the effects of Luhong Yixin Granules on myocardial fibrosis in rats with heart failure and its possible mechanism, a total of 60 male Wistar rats were randomly divided into the control group, model group, and low-, medium-and high-dose Luhong Yixin Granules groups, with 12 rats in each group. Except for those in the control group, rats in the other groups were induced by intraperitoneal injection of doxorubicin(DOX) into a rat model. After the Luhong Yixin Granules were dissolved in the same amount of normal saline, they were given by gavage at low, medium and high doses(2.8, 5.6, 11.2 g·kg~(-1)·d~(-1)), and the control group and the model group were given the same amount of normal saline by gavage for 40 days. After the end of dosing, echocardiography was used to measure left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS). Rat body weight(BW) and heart weight(HW) were calculated as HW/BW. Enzyme-linked immunosorbent assay was used to measure the levels of interleukin-6(IL-6), interleukin-17(IL-17), tumor necrosis factor-α(TNF-α), transforming growth factor-ß1(TGF-ß1), growth stimulation expressed gene 2 protein(ST2), N-terminal pro-B-type natriuretic peptide(NT-proBNP), galectin-3(Gal-3) and creatine kinase isoenzyme(CK-MB) in serum. Hematoxylin-eosin(HE) staining and Masson staining were used to observe the pathological morphology of myocardial tissue. Western blot and quantitative real-time polymerase chain reaction were used to detect the protein and mRNA expression levels of IL-6, IL-17, TNF-α, TGF-ß1, Smad3, Smad7, α-smooth muscle actin(α-SMA), and collagen Ⅰ(COL-Ⅰ), respectively. RESULTS:: showed that compared with those in the control group, LVEF, LVFS, and HW/BW in the model group were decreased(P<0.05), and the levels of IL-6, IL-17, TNF-α, TGF-ß1, ST2, NT-proBNP, Gal-3, and CK-MB were increased(P<0.05). HE staining showed inflammatory changes in myocardial tissue; Masson staining showed decreases in the cross-sectional area and ventricular cavity area of the heart, and myocardial fibrosis of varying degrees(P<0.05). The protein and mRNA expression of IL-6, IL-17, TNF-α, TGF-ß1, Smad3, α-SMA, and COL-Ⅰ were increased(P<0.05), and the protein and mRNA expression of Smad7 protein was decreased(P<0.01). Compared with those in the model group, LVEF, LVFS and HW/BW of the low-, medium-and high-dose Luhong Yixin Granules groups were increased(P<0.05), and the levels of IL-6, IL-17, TNF-α, TGF-ß1, ST2, NT-proBNP, Gal-3 and CK-MB were decreased(P<0.05). HE staining showed gradually reduced inflammatory changes of myocardial tissue, and Masson staining showed increased cross-sectional area and ventricular cavity area of the heart and decreased area of myocardial fibrosis(P<0.05). The protein and mRNA expression levels of IL-6, IL-17, TNF-α, TGF-ß1, Smad3, α-SMA, and COL-Ⅰ were decreased(P<0.05), while the protein and mRNA expression levels of Smad7 were increased(P<0.05). Luhong Yixin Granules may be of great value in the treatment of heart failure by regulating the TGF-ß1/Smads signaling pathway, inhibiting the expression of inflammation-related proteins, reducing the deposition of extracellular matrix, and alleviating myocardial fibrosis.


Asunto(s)
Medicamentos Herbarios Chinos , Fibrosis , Insuficiencia Cardíaca , Miocardio , Ratas Wistar , Transducción de Señal , Proteínas Smad , Factor de Crecimiento Transformador beta1 , Animales , Masculino , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Ratas , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Transducción de Señal/efectos de los fármacos , Miocardio/patología , Miocardio/metabolismo , Proteínas Smad/metabolismo , Proteínas Smad/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Humanos
13.
Environ Geochem Health ; 46(9): 346, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073472

RESUMEN

Heavy metals (HMs) seriously harm soil environment and threaten crop quality and human health. The aim of the study was to investigate the characteristics, quantify the sources and assess the risks of HMs in soil of upper Bailang River Basin (UBRB). The results indicated that the soils in UBRB were at a non-polluted level and posed a low ecological risk to the environment as a whole. The main pollutants were Ni and Cr obtained by indices Pi and Igeo. Based on the consideration of toxicity, the fuzzy comprehensive evaluation model and Ei index revealed that Hg and Cd were dominating pollutants and ecological risk factors of soil in UBRB. The positive matrix factorization model ascertained five potential sources of soil HMs, namely, plastic processing, energy activities, parent material, transportation and agriculture mixed source and industrial manufacturing, with contribution rates of 17%, 7%, 15%, 29% and 32%, respectively. Natural source primarily determined the non-carcinogenic risk for all populations, accounting for about 43% of the total risk. Industrial manufacturing mainly determined the carcinogenic risk, accounting for about 45%. For adults, the risk was acceptable for most of the sample points. For children, potential non-carcinogenic risks were present in 13.19% of the sample sites, which were mainly located in the west, and unacceptable carcinogenic risks were present in 57.21% of the sample sites, which were mainly concentrated in the western and central parts.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Ríos , Contaminantes del Suelo , Metales Pesados/análisis , Medición de Riesgo , Contaminantes del Suelo/análisis , China , Humanos , Ríos/química , Monitoreo del Ambiente/métodos , Adulto , Niño
14.
Nat Commun ; 15(1): 5636, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965232

RESUMEN

Natural antimicrobial peptides (AMPs) and enzymes (AMEs) are promising non-antibiotic candidates against antimicrobial resistance but suffer from low efficiency and poor stability. Here, we develop peptide nanozymes which mimic the mode of action of AMPs and AMEs through de novo design and peptide assembly. Through modelling a minimal building block of IHIHICI is proposed by combining critical amino acids in AMPs and AMEs and hydrophobic isoleucine to conduct assembly. Experimental validations reveal that IHIHICI assemble into helical ß-sheet nanotubes with acetate modulation and perform phospholipase C-like and peroxidase-like activities with Ni coordination, demonstrating high thermostability and resistance to enzymatic degradation. The assembled nanotubes demonstrate cascade antifungal actions including outer mannan docking, wall disruption, lipid peroxidation and subsequent ferroptotic death, synergistically killing >90% Candida albicans within 10 min on disinfection pad. These findings demonstrate an effective de novo design strategy for developing materials with multi-antimicrobial mode of actions.


Asunto(s)
Antifúngicos , Candida albicans , Antifúngicos/farmacología , Antifúngicos/química , Candida albicans/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Nanotubos/química , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Peroxidación de Lípido/efectos de los fármacos , Péptidos/farmacología , Péptidos/química
15.
J Microbiol Biotechnol ; 34(7): 1433-1442, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-38955795

RESUMEN

Gastric adenocarcinoma (GAC) is a common, malignant type of tumor in human, and is accompanied with higher mortality. Muscleblind-like 3 (MBNL3) was found to be a pivotal participator in aggravating this cancer's progression. However, the regulatory effects of MBNL3 on GAC development have not been investigated. We therefore sought to study the functions of MBNL3 in GAC progression. In this study, it was demonstrated that MBNL3 exhibited higher expression, and GAC patients with higher MBNL3 expression had poor prognosis. Overexpression of MBNL3 facilitated, and knockdown of MBNL3 suppressed cell proliferation, invasion, and angiogenesis in GAC. Further experiments showed that miR-302e targets MBNL3. Rescue assays then uncovered that the miR-302e/MBNL3 axis aggravated GAC progression. In addition, MBNL3 activated the AKT/VEGFA pathway, and the suppressive regulatory impacts of MBNL3 knockdown on GAC cell proliferation, invasion, and angiogenesis could be rescued after 740 Y-P treatment. Through in vivo assay, it was proved that MBNL3 accelerated tumor growth in vivo. In conclusion, MBNL3 acted as a target of miR-302e to facilitate cell proliferation, invasion, and angiogenesis of gastric adenocarcinoma through the AKT/VEGFA pathway. Our findings illustrate that MBNL3 may be an available bio-target for GAC treatment.


Asunto(s)
Adenocarcinoma , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , MicroARNs , Neovascularización Patológica , Proteínas Proto-Oncogénicas c-akt , Proteínas de Unión al ARN , Neoplasias Gástricas , Factor A de Crecimiento Endotelial Vascular , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Proliferación Celular/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Neovascularización Patológica/genética , Ratones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Transducción de Señal , Invasividad Neoplásica , Ratones Desnudos , Movimiento Celular/genética , Masculino , Ratones Endogámicos BALB C , Angiogénesis
16.
ACS Nano ; 18(26): 16450-16467, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38897929

RESUMEN

Nanozymes, which can selectively scavenge reactive oxygen species (ROS), have recently emerged as promising candidates for treating ischemic stroke and traumatic brain injury (TBI) in preclinical models. ROS overproduction during the early phase of these diseases leads to oxidative brain damage, which has been a major cause of mortality worldwide. However, the clinical application of ROS-scavenging enzymes is limited by their short in vivo half-life and inability to cross the blood-brain barrier. Nanozymes, which mimic the catalytic function of natural enzymes, have several advantages, including cost-effectiveness, high stability, and easy storage. These advantages render them superior to natural enzymes for disease diagnosis and therapeutic interventions. This review highlights recent advancements in nanozyme applications for ischemic stroke and TBI, emphasizing their potential to mitigate the detrimental effect of ROS overproduction, oxidative brain damage, inflammation, and blood-brain barrier compromise. Therefore, nanozymes represent a promising treatment modality for ROS overproduction conditions in future medical practices.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Inflamación , Accidente Cerebrovascular Isquémico , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Humanos , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Animales , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Barrera Hematoencefálica/metabolismo , Nanoestructuras/química
17.
Front Immunol ; 15: 1344773, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887301

RESUMEN

Background: Cardiovascular diseases (CVDs) stand as the foremost global cause of mortality, prompting a growing interest in using the potential of immune cells for heart injury treatment. This study aims to assess the causal association between immune cells and CVDs. Methods: A total of 731 immune cells were derived from a previously published genome-wide association study (GWAS), which included approximately 22 million genetic variants among 3,757 individuals of Sardinian ancestry. Genetic associations with atrial fibrillation (AF), heart failure, coronary artery disease, myocardial infarction and stroke were extracted from large-scale GWAS. A two-sample Mendelian randomization (MR) analysis was used to assess the causal association between immune cells and CVDs. Replication MR analysis based on FinnGen dataset and meta-analysis are sequentially conducted to validate causal relationships. Results: Collectively, genetically predicted 4 immune cell traits were associated with AF and 5 immune cell traits were associated with stroke. Increased levels of IgD- CD38dim absolute count were associated with a higher susceptibility to AF, while increased expression of CD14+ CD16+ monocytes, CD62L on CD62L+ myeloid dendritic cells, and CD16 on CD14- CD16+ monocytes were linked to a decreased susceptibility to AF. Additionally, an elevated susceptibility to stroke was linked to an increase in the percentage of CD39+ resting Tregs and heightened CD27 expression on IgD- CD38+ cells. Conversely, a decreased susceptibility to stroke was associated with increased CD40 expression on monocytes, particularly on CD14+ CD16+ and CD14+ CD16- monocytes, with the latter two showing the most compelling evidence. Conclusion: This study identified several immune cell traits that have a causal relationship with CVDs, thus confirming that immune cells play an important role in the pathogenesis of these diseases.


Asunto(s)
Enfermedades Cardiovasculares , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Inmunofenotipificación , Análisis de la Aleatorización Mendeliana , Humanos , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/inmunología , Polimorfismo de Nucleótido Simple
18.
Mar Pollut Bull ; 205: 116588, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889666

RESUMEN

Mariculture stands as a pivotal enterprise aimed at enhancing the quality of human existence. However, the utilization of antibiotics and pesticides in the mariculture process poses threats to both the environment and human well-being. Therefore, it is of great significance to investigate the occurrence, distribution and risk of antibiotics and pesticides in mariculture areas. In this study, 11 kinds of antibiotics and 12 kinds of pesticides were screened in four mariculture areas around Liaodong Peninsula in China. The pollution characteristics of pollutants were investigated in three different mariculture stages. The pollution in the reproduction stage was the most serious, indicating that mariculture may have a potential impact on the surrounding seawater. Health risk assessment results indicate that the pollutants have a significant risk to human health, therefore it is necessary to strengthen the control of chemicals used in mariculture in future.


Asunto(s)
Antibacterianos , Monitoreo del Ambiente , Plaguicidas , Contaminantes Químicos del Agua , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , China , Plaguicidas/análisis , Antibacterianos/análisis , Acuicultura , Agua de Mar/química , Humanos
19.
J Colloid Interface Sci ; 671: 354-373, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38815372

RESUMEN

Berberine (Ber), an isoquinoline alkaloid, is a potential drug therapy for ulcerative colitis (UC) because of its anti-inflammatory activity, high biological safety, and few side effects. Nevertheless, its clinical application is hindered by its limited water solubility and low bioavailability. Currently, compared to synthetic nanocarriers, exosomes as carriers possess advantages such as low toxicity, high stability, and high specificity. Human placental mesenchymal stem cell-derived exosomes (HplMSC-Exos) have emerged as a promising drug delivery system, offering intrinsic anti-inflammatory and antioxidant activities. Therefore, we engineered MSC-Exos loaded with Ber (Exos-Ber) to enhance the solubility and bioavailability of Ber and for colon targeting, revealing a novel approach for treating UC with natural compounds. Structurally and functionally, Exos-Ber closely resembled unmodified Exos. Both in vitro and in vivo investigations confirmed the antioxidant and anti-inflammatory properties of Exos-Ber. Notably, Exos-Ber exhibited reparative effects on injured epithelial cells and reduced cellular apoptosis. Furthermore, Exos-Ber concurrently demonstrated anti-inflammatory and antioxidant activities, contributing to the mitigation of UC, possibly through its modulation of the MAPK signaling pathway. Overall, our findings demonstrate the potential of Exos-Ber as a promising therapeutic option for alleviating UC, highlighting its capacity to enhance the clinical applicability of Ber.


Asunto(s)
Berberina , Colitis Ulcerosa , Exosomas , Células Madre Mesenquimatosas , Exosomas/metabolismo , Exosomas/química , Colitis Ulcerosa/terapia , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Berberina/farmacología , Berberina/química , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Humanos , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Apoptosis/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Células Cultivadas , Femenino , Tamaño de la Partícula , Supervivencia Celular/efectos de los fármacos
20.
Int Immunopharmacol ; 134: 112245, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38749334

RESUMEN

Gastric cancer (GC) has posed a great threat to the lives of people around the world. To date, safer and more cost-effective therapy for GC is lacking. Traditional Chinese medicine (TCM) may provide some new options for this. Guiqi Baizhu Formula (GQBZF), a classic TCM formula, has been extensively used to treat GC, while its bioactive components and therapeutic mechanisms remain unclear. In this study, we evaluated the underlying mechanisms of GQBZF in treating GC by integrative approach of chemical bioinformatics. GQBZF lyophilized powder (0.0625 mg/mL, 0.125 mg/mL) significantly attenuated the expression of p-IGF1R, PI3K, p-PDK1, p-VEGFR2 to inhibit the proliferation, migration and induce apoptosis of gastric cancer cells, which was consistent with the network pharmacology. Additionally, atractylenolide Ⅰ, quercetin, glycyrol, physcione and aloe-emodin, emodin, kaempferol, licoflavone A were found to be the key compounds of GQBZF regulating IGF1R and VEGFR2, respectively. And among which, glycyrol and emodin were determined as key active compounds against GC by farther vitro experiments and LC/MS. Meanwhile, we also found that glycyrol inhibited MKN-45 cells proliferation and enhanced apoptosis, which might be related to the inhibition of IGF1R/PI3K/PDK1, and emodin could significantly attenuate the MKN-45 cells migration, which might be related to the inhibition of VEGFR2-related signaling pathway. These results were verified again by molecular dynamics simulation and binding interaction pattern. In summary, this study suggested that GQBZF and its key active components (glycyrol and emodin) can suppress IGF1R/PI3K/PDK1 and VEGFR2-related signaling pathway, thereby inhibiting tumor cell proliferation and migration and inducing apoptosis. These findings provided an important strategy for developing new agents and facilitated clinical use of GQBZF against GC.


Asunto(s)
Apoptosis , Movimiento Celular , Proliferación Celular , Biología Computacional , Medicamentos Herbarios Chinos , Receptor IGF Tipo 1 , Neoplasias Gástricas , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Receptor IGF Tipo 1/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Biología Computacional/métodos , Transducción de Señal/efectos de los fármacos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Somatomedina/metabolismo , Farmacología en Red , Antineoplásicos Fitogénicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA