Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Emerg Microbes Infect ; 13(1): 2389115, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39129566

RESUMEN

Rabies is a lethal zoonotic disease that threatens human health. As the only viral surface protein, the rabies virus (RABV) glycoprotein (G) induces main neutralizing antibody (Nab) responses; however, Nab titre is closely correlated with the conformation of G. Virus-like particles (VLP) formed by the co-expression of RABV G and matrix protein (M) improve retention and antigen presentation, inducing broad, durable immune responses. RABV nucleoprotein (N) can elicit humoral and cellular immune responses. Hence, we developed a series of nucleoside-modified RABV mRNA vaccines encoding wild-type G, soluble trimeric RABV G formed by an artificial trimer motif (tG-MTQ), membrane-anchored prefusion-stabilized G (preG). Furthermore, we also developed RABV VLP mRNA vaccine co-expressing preG and M to generate VLPs, and VLP/N mRNA vaccine co-expressing preG, M, and N. The RABV mRNA vaccines induced higher humoral and cellular responses than inactivated rabies vaccine, and completely protected mice against intracerebral challenge. Additionally, the IgG and Nab titres in RABV preG, VLP and VLP/N mRNA groups were significantly higher than those in G and tG-MTQ groups. A single administration of VLP or VLP/N mRNA vaccines elicited protective Nab responses, the Nab titres were significantly higher than that in inactivated rabies vaccine group at day 7. Moreover, RABV VLP and VLP/N mRNA vaccines showed superior capacities to elicit potent germinal centre, long-lived plasma cell and memory B cell responses, which linked to high titre and durable Nab responses. In summary, our data demonstrated that RABV VLP and VLP/N mRNA vaccines could be promising candidates against rabies.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Inmunidad Celular , Inmunidad Humoral , Vacunas Antirrábicas , Virus de la Rabia , Rabia , Vacunas de Partículas Similares a Virus , Animales , Vacunas Antirrábicas/inmunología , Vacunas Antirrábicas/administración & dosificación , Vacunas Antirrábicas/genética , Rabia/prevención & control , Rabia/inmunología , Virus de la Rabia/inmunología , Virus de la Rabia/genética , Ratones , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Femenino , Vacunas de ARNm/inmunología , Ratones Endogámicos BALB C , Nucleósidos/inmunología , Glicoproteínas/inmunología , Glicoproteínas/genética , Humanos , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Proteínas de la Matriz Viral/inmunología , Proteínas de la Matriz Viral/genética , Antígenos Virales/inmunología , Antígenos Virales/genética , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/genética , ARN Mensajero/genética , ARN Mensajero/inmunología
2.
Int J Nanomedicine ; 19: 8029-8042, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39130684

RESUMEN

Purpose: Heterologous immunization using different vaccine platforms has been demonstrated as an efficient strategy to enhance antigen-specific immune responses. In this study, we performed a head-to-head comparison of both humoral and cellular immune response induced by different prime-boost immunization regimens of mRNA vaccine and adjuvanted protein subunit vaccine against varicella-zoster virus (VZV) in middle-aged mice, aiming to get a better understanding of the influence of vaccination schedule on immune response. Methods: VZV glycoprotein (gE) mRNA was synthesized and encapsulated into SM-102-based lipid nanoparticles (LNPs). VZV-primed middle-aged C57BL/6 mice were then subjected to homologous and heterologous prime-boost immunization strategies using VZV gE mRNA vaccine (RNA-gE) and protein subunit vaccine (PS-gE). The antigen-specific antibodies were evaluated using enzyme-linked immunosorbent assay (ELISA) analysis. Additionally, cell-mediated immunity (CMI) was detected using ELISPOT assay and flow cytometry. Besides, in vivo safety profiles were also evaluated and compared. Results: The mRNA-loaded lipid nanoparticles had a hydrodynamic diameter of approximately 130 nm and a polydispersity index of 0.156. Total IgG antibody levels exhibited no significant differences among different immunization strategies. However, mice received 2×RNA-gE or RNA-gE>PS-gE showed a lower IgG1/IgG2c ratio than those received 2×PS-gE and PS-gE> RNA-gE. The CMI response induced by 2×RNA-gE or RNA-gE>PS-gE was significantly stronger than that induced by 2×PS-gE and PS-gE> RNA-gE. The safety evaluation indicated that both mRNA vaccine and protein vaccine induced a transient body weight loss in mice. Furthermore, the protein vaccine produced a notable inflammatory response at the injection sites, while the mRNA vaccine showed no observable inflammation. Conclusion: The heterologous prime-boost strategy has demonstrated that an mRNA-primed immunization regimen can induce a better cell-mediated immune response than a protein subunit-primed regimen in middle-aged mice. These findings provide valuable insights into the design and optimization of VZV vaccines with the potentials to broaden varicella vaccination strategies in the future.


Asunto(s)
Adyuvantes Inmunológicos , Inmunidad Celular , Ratones Endogámicos C57BL , Nanopartículas , Vacunas de Subunidad , Animales , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Nanopartículas/química , Adyuvantes Inmunológicos/administración & dosificación , Femenino , Vacunas de ARNm , Ratones , Herpesvirus Humano 3/inmunología , Anticuerpos Antivirales/sangre , Inmunización Secundaria/métodos , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/administración & dosificación , Vacuna contra el Herpes Zóster/inmunología , Vacuna contra el Herpes Zóster/administración & dosificación , Liposomas
3.
Front Med (Lausanne) ; 10: 1267903, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38143441

RESUMEN

Introduction: Since its outbreak in December 2019, SARS-CoV-2 has spread rapidly across the world, posing significant threats and challenges to global public health. SARS-CoV-2, together with SARS-CoV and MERS-CoV, is a highly pathogenic coronavirus that contributes to fatal pneumonia. Understanding the similarities and differences at the transcriptome level between SARS-CoV-2, SARS-CoV, as well as MERS-CoV is critical for developing effective strategies against these viruses. Methods: In this article, we comparatively analyzed publicly available transcriptome data of human cell lines infected with highly pathogenic SARS-CoV-2, SARS-CoV, MERS-CoV, and lowly pathogenic HCoV-229E. The host gene expression profiles during human coronavirus (HCoV) infections were generated, and the pathways and biological functions involved in immune responses, antiviral efficacy, and organ damage were intensively elucidated. Results: Our results indicated that SARS-CoV-2 induced a stronger immune response versus the other two highly pathogenic HCoVs. Specifically, SARS-CoV-2 induced robust type I and type III IFN responses, marked by higher upregulation of type I and type III IFNs, as well as numerous interferon-stimulated genes (ISGs). Further Ingenuity Pathway Analysis (IPA) revealed the important role of ISGs for impeding SARS-CoV-2 infection, and the interferon/ISGs could be potential targets for therapeutic interventions. Moreover, our results uncovered that SARS-CoV-2 infection was linked to an enhanced risk of multi-organ toxicity in contrast to the other two highly pathogenic HCoVs. Discussion: These findings provided valuable insights into the pathogenic mechanism of SARS-CoV-2, which showed a similar pathological feature but a lower fatality rate compared to SARS-CoV and MERS-CoV.

4.
Front Microbiol ; 14: 1243371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808319

RESUMEN

Introduction: Non-tuberculous mycobacteria (NTM) is a major category of environmental bacteria in nature that can be divided into rapidly growing mycobacteria (RGM) and slowly growing mycobacteria (SGM) based on their distinct growth rates. To explore differential molecular mechanisms between RGM and SGM is crucial to understand their survival state, environmental/host adaptation and pathogenicity. Comparative genomic analysis provides a powerful tool for deeply investigating differential molecular mechanisms between them. However, large-scale comparative genomic analysis between RGM and SGM is still uncovered. Methods: In this study, we screened 335 high-quality, non-redundant NTM genome sequences covering 187 species from 3,478 online NTM genomes, and then performed a comprehensive comparative genomic analysis to identify differential genomic characteristics and featured genes/protein domains between RGM and SGM. Results: Our findings reveal that RGM has a larger genome size, more genes, lower GC content, and more featured genes/protein domains in metabolism of some main substances (e.g. carbohydrates, amino acids, nucleotides, ions, and coenzymes), energy metabolism, signal transduction, replication, transcription, and translation processes, which are essential for its rapid growth requirements. On the other hand, SGM has a smaller genome size, fewer genes, higher GC content, and more featured genes/protein domains in lipid and secondary metabolite metabolisms and cellular defense mechanisms, which help enhance its genome stability and environmental adaptability. Additionally, orthogroup analysis revealed the important roles of bacterial division and bacteriophage associated genes in RGM and secretion system related genes for better environmental adaptation in SGM. Notably, PCoA analysis of the top 20 genes/protein domains showed precision classification between RGM and SGM, indicating the credibility of our screening/classification strategies. Discussion: Overall, our findings shed light on differential underlying molecular mechanisms in survival state, adaptation and pathogenicity between RGM and SGM, show the potential for our comparative genomic pipeline to investigate differential genes/protein domains at whole genomic level across different bacterial species on a large scale, and provide an important reference and improved understanding of NTM.

5.
Int J Mol Sci ; 24(17)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37686393

RESUMEN

Inoculation routes may significantly affect vaccine performance due to the local microenvironment, antigen localization and presentation, and, therefore, final immune responses. In this study, we conducted a head-to-head comparison of immune response and safety of inactivated rabies vaccine inoculated via intraperitoneal (IP), intramuscular (IM), subcutaneous (SC) and needle-free injection technology-based intradermal (ID) routes in ICR mice. Immune response was assessed in terms of antigen-specific antibodies, antibody subtypes and neutralizing antibodies for up to 28 weeks. A live rabies virus challenge was also carried out to evaluate vaccine potency. The dynamics of inflammatory cell infiltration at the skin and muscle levels were determined via histopathological examination. The kinetics and distribution of a model antigen were also determined by using in vivo fluorescence imaging. Evidence is presented that the vaccine inoculated via the ID route resulted in the highest antigen-specific antibody and neutralizing antibody titers among all administration routes, while IP and IM routes were comparable, followed by the SC route. Antibody subtype analysis shows that the IP route elicited a Th1-biased immune response, while SC and IM administration elicited a prominent Th2-type immune response. Unexpectedly, the ID route leads to a balanced Th1 and Th2 immune response. In addition, the ID route conferred effective protection against lethal challenge with 40 LD50 of the rabies CVS strain, which was followed by IP and IM routes. Moreover, a one-third dose of the vaccine inoculated via the ID route provided comparable or higher efficacy to a full dose of the vaccine via the other three routes. The superior performance of ID inoculation over other routes is related to longer local retention at injection sites and higher lymphatic drainage. Histopathology examination reveals a transient inflammatory cell infiltration at ID and IM injection sites which peaked at 48 h and 24 h, respectively, after immunization, with all side effects disappearing within one week. These results suggest that needle-free injection technology-based ID inoculation is a promising strategy for rabies vaccination in regard to safety and efficacy.


Asunto(s)
Vacunas Antirrábicas , Rabia , Animales , Ratones , Ratones Endogámicos ICR , Rabia/prevención & control , Inyecciones Intramusculares , Anticuerpos Neutralizantes , Inmunidad
6.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37628824

RESUMEN

HIV-1 vaccines have been challenging to develop, partly due to the high level of genetic variation in its genome. Thus, a vaccine that can induce cross-reactive neutralization activities will be needed. Studies on the co-evolution of antibodies and viruses indicate that mimicking the natural infection is likely to induce broadly neutralizing antibodies (bnAbs). We generated the consensus Env sequence for each time point in subject CH505, who developed broad neutralization activities, and selected five critical time points before broad neutralization was detected. These consensus sequences were designed to express stable Env trimers. Priming with the transmitted/founder Env timer and sequential boosting with these consensus Env trimers from different time points induced broader and more potent neutralizing activities than the BG505 Env trimer in guinea pigs. Analysis of the neutralization profiles showed that sequential immunization of Env trimers favored nAbs with gp120/gp41 interface specificity while the BG505 Env trimer favored nAbs with V2 specificity. The unique features such as consensus sequences, stable Env trimers and the sequential immunization to mimic natural infection likely has allowed the induction of improved neutralization responses.


Asunto(s)
Vacunas contra el SIDA , Inmunización , Animales , Cobayas , Vacunación , Anticuerpos , Secuencia de Consenso
7.
Immunol Lett ; 260: 11-21, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37290556

RESUMEN

Genital herpes caused by herpes simplex virus type 2 (HSV-2) poses a global health issue. HSV-2 infection increases the risk of acquiring HIV infection. Studies have demonstrated that HSV-2 subunit vaccines have potential benefits, but require adjuvants to induce a balanced Th1/Th2 response. To develop a novel, effective vaccine, in this study, a truncated glycoprotein D (aa 1-285) of HSV-2 was formulated with an Al(OH)3 adjuvant, three squalene adjuvants, zMF59, zAS03, and zAS02, or a mucosal adjuvant, bacterium-like particles (BLPs). The immunogenicity of these subunit vaccines was evaluated in mice. After three immunizations, vaccines formulated with Al(OH)3, zMF59, zAS03, and zAS02 (intramuscularly) induced higher titers of neutralizing antibody than that formulated without adjuvant, and in particular, mice immunized with the vaccine plus zAS02 had the highest neutralizing antibody titers and tended to produce a more balanced immune reaction than others. Intranasal gD2-PA-BLPs also induced excellent IgA levels and a more balanced Th1 and Th2 responses than intranasal gD2. After challenge with a lethal dose of HSV-2, all five adjuvants exhibited a positive effect in improving the survival rate. zAS02 and gD2-PA-BLPs enhanced survival by 50% and 25%, respectively, when compared with the vaccine without adjuvant. zAS02 was the only adjuvant that resulted in complete vaginal virus clearance and genital lesion healing within eight days. These results demonstrate the potential of using zAS02 as a subunit vaccine adjuvant, and BLPs as a mucosal vaccine adjuvant.


Asunto(s)
Infecciones por VIH , Herpes Genital , Femenino , Animales , Ratones , Herpesvirus Humano 2/fisiología , Adyuvantes de Vacunas , Anticuerpos Antivirales , Proteínas del Envoltorio Viral , Herpes Genital/prevención & control , Anticuerpos Neutralizantes , Adyuvantes Inmunológicos , Inmunización , Vacunas de Subunidad
10.
Viruses ; 15(1)2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36680259

RESUMEN

Genital herpes (GH) has become one of the most common sexually transmitted diseases worldwide, and it is spreading rapidly in developing countries. Approximately 90% of GH cases are caused by HSV-2. Therapeutic HSV-2 vaccines are intended for people already infected with HSV-2 with the goal of reducing clinical recurrences and recurrent virus shedding. In our previous work, we evaluated recombinant adenovirus-based vaccines, including rAd-gD2ΔUL25, rAd-ΔUL25, and rAd-gD2, for their potency as prophylactic vaccines. In this study, we evaluated these three vaccines as therapeutic vaccines against acute and recurrent diseases in intravaginal challenged guinea pigs. Compared with the control groups, the recombinant vaccine rAd-gD2ΔUL25 induced a higher titer of the binding antibody, and rAd-gD2 + rAd-ΔUL25 induced a higher titer of the neutralizing antibody. Both rAd-gD2ΔUL25 and rAd-gD2 + rAd-ΔUL25 vaccines significantly enhanced the survival rate by 50% compared to rAd-gD2 and reduced viral replication in the genital tract and recurrent genital skin disease. Our findings provide a new perspective for HSV-2 therapeutic vaccine research and provide a new technique to curtail the increasing spread of HSV-2.


Asunto(s)
Infecciones por Adenoviridae , Vacunas contra el Adenovirus , Herpes Genital , Vacunas contra el Virus del Herpes Simple , Cobayas , Animales , Herpesvirus Humano 2/genética , Adenoviridae/genética , Proteínas del Envoltorio Viral/genética , Herpes Genital/prevención & control , Vacunas Sintéticas/genética , Anticuerpos Antivirales
11.
J Environ Sci (China) ; 125: 277-289, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36375914

RESUMEN

Black carbon (BC) has importance regarding aerosol composition, radiative balance, and human exposure. This study adopted a backward-trajectory approach to quantify the origins of BC from anthropogenic emissions (BCAn) and open biomass burning (BCBB) transported to Xishuangbanna in 2017. Haze months, between haze and clean months, and clean months in Xishuangbanna were defined according to daily PM2.5 concentrations of >75, 35-75, and <35 µg/m3, respectively. Results showed that the transport efficiency density (TED) of BC transported to Xishuangbanna was controlled by the prevailing winds in different seasons. The yearly contributions to the effective emission intensity of BCAn and BCBB transported to Xishuangbanna were 52% and 48%, respectively. However, when haze occurred in Xishuangbanna, the average BCAn and BCBB contributions were 23% and 77%, respectively. This suggests that open biomass burning (BB) becomes the dominant source in haze months. Myanmar, India, and Laos were the dominant source regions of BC transported to Xishuangbanna during haze months, accounting for 59%, 18%, and 13% of the total, respectively. Furthermore, India was identified as the most important source regions of BCAn transported to Xishuangbanna in haze months, accounting for 14%. The two countries making the greatest contributions to BCBB transported to Xishuangbanna were Myanmar and Laos in haze months, accounting for 55% and 13%, respectively. BC emissions from Xishuangbanna had minimal effects on the results of the present study. It is suggested that open BB in Myanmar and Laos, and anthropogenic emissions in India were responsible for poor air quality in Xishuangbanna.


Asunto(s)
Contaminantes Atmosféricos , Humanos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Biomasa , Monitoreo del Ambiente/métodos , Hollín/análisis , Aerosoles/análisis , Estaciones del Año , China , Carbono/análisis
12.
Chin Med J (Engl) ; 135(22): 2706-2717, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36574218

RESUMEN

BACKGROUND: Ubiquitination plays an essential role in many biological processes, including viral infection, and can be reversed by deubiquitinating enzymes (DUBs). Although some studies discovered that DUBs inhibit or enhance viral infection by various mechanisms, there is lack of information on the role of DUBs in virus regulation, which needs to be further investigated. METHODS: Immunoblotting, real-time polymerase chain reaction, in vivo / in vitro deubiquitination, protein immunoprecipitation, immunofluorescence, and co-localization biological techniques were employed to examine the effect of ubiquitin-specific protease 3 (USP3) on APOBEC3G (A3G) stability and human immunodeficiency virus (HIV) replication. To analyse the relationship between USP3 and HIV disease progression, we recruited 20 HIV-infected patients to detect the levels of USP3 and A3G in peripheral blood and analysed their correlation with CD4 + T-cell counts. Correlation was estimated by Pearson correlation coefficients (for parametric data). RESULTS: The results demonstrated that USP3 specifically inhibits HIV-1 replication in an A3G-dependent manner. Further investigation found that USP3 stabilized 90% to 95% of A3G expression by deubiquitinating Vif-mediated polyubiquitination and blocking its degradation in an enzyme-dependent manner. It also enhances the A3G messenger RNA (mRNA) level by binding to A3G mRNA and stabilizing it in an enzyme-independent manner. Moreover, USP3 expression was positively correlated with A3G expression ( r  = 0.5110) and CD4 + T-cell counts ( r  = 0.5083) in HIV-1-infected patients. CONCLUSIONS: USP3 restricts HIV-1 viral infections by increasing the expression of the antiviral factor A3G. Therefore, USP3 may be an important target for drug development and serve as a novel therapeutic strategy against viral infections.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Replicación Viral , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/farmacología , Enzimas Desubicuitinizantes/metabolismo , Desaminasa APOBEC-3G/genética , Desaminasa APOBEC-3G/metabolismo , Desaminasa APOBEC-3G/farmacología , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Citidina Desaminasa/farmacología
13.
Viruses ; 14(12)2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36560777

RESUMEN

Defective interfering particles (DIPs) are particles containing defective viral genomes (DVGs) generated during viral replication. DIPs have been found in various RNA viruses, especially in influenza viruses. Evidence indicates that DIPs interfere with the replication and encapsulation of wild-type viruses, namely standard viruses (STVs) that contain full-length viral genomes. DIPs may also activate the innate immune response by stimulating interferon synthesis. In this review, the underlying generation mechanisms and characteristics of influenza virus DIPs are summarized. We also discuss the potential impact of DIPs on the immunogenicity of live attenuated influenza vaccines (LAIVs) and development of influenza vaccines based on NS1 gene-defective DIPs. Finally, we review the antiviral strategies based on influenza virus DIPs that have been used against both influenza virus and SARS-CoV-2. This review provides systematic insights into the theory and application of influenza virus DIPs.


Asunto(s)
COVID-19 , Vacunas contra la Influenza , Orthomyxoviridae , Humanos , Antivirales , Virus Interferentes Defectuosos , Virus Defectuosos/fisiología , SARS-CoV-2 , Orthomyxoviridae/genética , Replicación Viral/genética
14.
Microbiol Spectr ; 10(6): e0127022, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36314975

RESUMEN

The emergence of a new type of COVID-19 patients, who were retested positive after hospital discharge with long-term persistent SARS-CoV-2 infection but without COVID-19 clinical symptoms (hereinafter, LTPPs), poses novel challenges to COVID-19 treatment and prevention. Why was there such a contradictory phenomenon in LTPPs? To explore the mechanism underlying this phenomenon, we performed quantitative proteomic analyses using the sera of 12 LTPPs (Wuhan Pulmonary Hospital), with the longest carrying history of 132 days, and mainly focused on 7 LTPPs without hypertension (LTPPs-NH). The results showed differential serum protein profiles between LTPPs/LTPPs-NH and health controls. Further analysis identified 174 differentially-expressed-proteins (DEPs) for LTPPs, and 165 DEPs for LTPPs-NH, most of which were shared. GO and KEGG analyses for these DEPs revealed significant enrichment of "coagulation" and "immune response" in both LTPPs and LTPPs-NH. A unity of contradictory genotypes in the 2 aspects were then observed: some DEPs showed the same dysregulated expressed trend as that previously reported for patients in the acute phase of COVID-19, which might be caused by long-term stimulation of persistent SARS-CoV-2 infection in LTPPs, further preventing them from complete elimination; in contrast, some DEPs showed the opposite expression trend in expression, so as to retain control of COVID-19 clinical symptoms in LTPPs. Overall, the contrary effects of these DEPs worked together to maintain the balance of LTPPs, further endowing their contradictory steady-state with long-term persistent SARS-CoV-2 infection but without symptoms. Additionally, our study revealed some potential therapeutic targets of COVID-19. Further studies on these are warranted. IMPORTANCE This study reported a new type of COVID-19 patients and explored the underlying molecular mechanism by quantitative proteomic analyses. DEPs were significantly enriched in "coagulation" and "immune response". Importantly, we identified 7 "coagulation system"- and 9 "immune response"-related DEPs, the expression levels of which were consistent with those previously reported for patients in the acute phase of COVID-19, which appeared to play a role in avoiding the complete elimination of SARS-CoV-2 in LTPPs. On the contrary, 6 "coagulation system"- and 5 "immune response"-related DEPs showed the opposite trend in expression. The 11 inconsistent serum proteins seem to play a key role in the fight against long-term persistent SARS-CoV-2 infection, further retaining control of COVID-19 clinical symptom of LTPPs. The 26 proteins can serve as potential therapeutic targets and are thus valuable for the treatment of LTPPs; further studies on them are warranted.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19 , Proteómica , Genotipo
15.
Front Immunol ; 13: 938598, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935960

RESUMEN

We previously explored a panel of adjuvants formulated with pre-fusion RSV-F protein and found that AS02 may be a promising candidate adjuvant for developing RSV-F subunit vaccines with improved immunogenicity and desired immune response type. In this study, we performed a head-to-head comparison of the effect of intramuscular injection to that of subcutaneous injection on the immune response and protective efficacy of recombinant RSV-F subunit vaccine with or without adjuvants (Alhydrogel, squalene-based emulsion adjuvants MF59, AS03, and AS02) in BALB/c mice. After inoculations, antigen-specific antibodies, neutralizing antibodies, antibody subtypes, cytokines, and the persistence of immune response were evaluated. Moreover, challenge tests were also performed to illustrate the possible effect of inoculation routes and adjuvant on virus clearance and histochemistry changes in the lungs of mice. The results indicated that intramuscular inoculation is a more effective and antigen dose-sparing route to enhance the immune response, although subcutaneous inoculation induced faster and stronger IgG antibodies after the initial immunization. Furthermore, adjuvant, but not immunization route, is a more critical factor to affect the humoral/cellular immune response and the immune bias. In addition, adjuvant inoculated via the intramuscular route is safer than that via the subcutaneous route, especially for AS02. This study highlights the importance of the adjuvant and immunization routes in the design and clinical transformation of adjuvanted vaccines. Further investigation is needed to illustrate the mechanism underlying the above difference in both efficiency and safety.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Adyuvantes Inmunológicos , Animales , Anticuerpos Antivirales , Ratones , Ratones Endogámicos BALB C , Virus Sincitiales Respiratorios , Vacunas de Subunidad
16.
Viruses ; 14(6)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35746685

RESUMEN

Herpes zoster (HZ) is caused by the reactivation of latent varicella-zoster virus (VZV) from the sensory ganglia due to aging or immunosuppression. Glycoprotein E (gE) is a widely used vaccine antigen for specific humoral and cellular immune responses. Immediate early protein 63 (IE63) is expressed during latency, suggesting that it is a potential antigen against HZ reactivation. In this study, HZ DNA vaccines encoding gE, IE63, IE63-2A-gE (where 2A is a self-cleaving sequence), or IE63-linker-gE were developed and investigated for immunogenicity in mice. The results showed that each HZ DNA vaccine induced VZV-specific antibody production. The neutralizing antibody titer elicited by IE63-2A-gE was comparable to that elicited by gE or live attenuated HZ vaccine (LAV). IE63-2A-gE-induced gE or IE63-specific INF-γ+ T cell frequencies in splenocytes were comparable to those of LAV. Furthermore, IE63-2A-gE, gE, or IE63 led to a significant increase in IFN-γ (IE63 stimulation) and IL-2 (gE stimulation) secretion compared to LAV, showing a Th1-biased immune response. Moreover, IE63-2A-gE and gE induced cytotoxic activity of CD8+ T cells compared to that of LAV. This study elucidates that the IE63-2A-gE DNA vaccine can induce both humoral and cell-mediated immune responses, which provides a candidate for the development of an HZ vaccine.


Asunto(s)
Vacuna contra el Herpes Zóster , Herpes Zóster , Proteínas Inmediatas-Precoces , Vacunas de ADN , Animales , Anticuerpos Antivirales , Linfocitos T CD8-positivos , Glicoproteínas , Herpesvirus Humano 3/genética , Proteínas Inmediatas-Precoces/genética , Ratones , Proteínas del Envoltorio Viral/genética
17.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35409297

RESUMEN

Influenza virus is an acute and highly contagious respiratory pathogen that causes great concern to public health and for which there is a need for extensive drug discovery. The small chemical compound ABMA and its analog DABMA, containing an adamantane or a dimethyl-adamantane group, respectively, have been demonstrated to inhibit multiple toxins (diphtheria toxin, Clostridium difficile toxin B, Clostridium sordellii lethal toxin) and viruses (Ebola, rabies virus, HSV-2) by acting on the host's vesicle trafficking. Here, we showed that ABMA and DABMA have antiviral effects against both amantadine-sensitive influenza virus subtypes (H1N1 and H3N2), amantadine-resistant subtypes (H3N2), and influenza B virus with EC50 values ranging from 2.83 to 7.36 µM (ABMA) and 1.82 to 6.73 µM (DABMA), respectively. ABMA and DABMA inhibited the replication of influenza virus genomic RNA and protein synthesis by interfering with the entry stage of the virus. Molecular docking evaluation together with activity against amantadine-resistant influenza virus strains suggested that ABMA and DABMA were not acting as M2 ion channel blockers. Subsequently, we found that early internalized H1N1 virions were retained in accumulated late endosome compartments after ABMA treatment. Additionally, ABMA disrupted the early stages of the H1N1 life cycle or viral RNA synthesis by interfering with autophagy. ABMA and DABMA protected mice from an intranasal H1N1 challenge with an improved survival rate of 67%. The present study suggests that ABMA and DABMA are potential antiviral leads for the development of a host-directed treatment against influenza virus infection.


Asunto(s)
Adamantano , Subtipo H1N1 del Virus de la Influenza A , Amantadina/farmacología , Animales , Antivirales/química , Antivirales/farmacología , Autofagia , Endosomas , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A , Ratones , Simulación del Acoplamiento Molecular , p-Dimetilaminoazobenceno/análogos & derivados
18.
Pharmazie ; 77(1): 32-37, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-35045923

RESUMEN

This study aimed to prepare icariside I (ICS I) and icariside II (ICS II) from Epimedium koreanum Nakai, explore their protective mechanism against cyclophosphamide-induced bone marrow suppression in mice and determine their regulatory effects on immune function. The results showed that after treatment with ICS I and ICS II, the number of peripheral blood cells in the mice returned to normal. The number of bone marrow nucleated cells (BMNCs) and haematopoietic progenitor cell (HPC) colonies in the ICS I-H and ICS II-H treatment groups increased significantly. The thymus and spleen indices and related cytokine levels in the mice returned to normal. ICS I-H and ICS II-H treatment significantly increased the ratio of Bcl-2/Bax and downregulated the expression of caspase-3 to regulate cell apoptosis. In conclusion, ICS I and ICS II promoted the proliferation and differentiation of bone marrow haematopoietic cells and protected the damaged immune system, and the therapeutic effects of high doses were more significant. Regulating the levels of haematopoietic cytokines, the balance of Bcl-2/Bax, and the inhibition of caspase-3 expression may be the mechanisms of action of ICS I and ICS II against cyclophosphamide-induced bone marrow suppression in mice.


Asunto(s)
Médula Ósea , Flavonoides , Animales , Médula Ósea/metabolismo , Caspasa 3/metabolismo , Ciclofosfamida/toxicidad , Flavonas , Flavonoides/farmacología , Inmunidad , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Umbeliferonas , Proteína X Asociada a bcl-2/metabolismo
19.
Medicine (Baltimore) ; 101(51): e32361, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36595842

RESUMEN

BACKGROUND: Anal sinusitis is an acute or chronic inflammation of the anal sinus, anal flap, and anal glands. There are many traditional Chinese medicine (TCM) therapies for anal sinusitis, and most of them can achieve satisfactory results. Retention enema is one effective treatment for anal sinusitis. Although a number of studies have shown the effectiveness of retention enema with TCM in treating anal sinusitis, the results are inconsistent. Therefore, a meta-analysis was carried out in this study to evaluate the efficacy and safety of retention enema with TCM in the treatment of anal sinusitis. METHODS: Randomized controlled trials on TCM retention enema for treating anal sinusitis were retrieved from PubMed, EMBASE, The Cochrane Library, CNKI, WanFang databases and VIP databases. The search time limit was from the database establishment to November 15, 2022. Two researchers independently screened the literature, extracted the data, and evaluated the risk of bias in the included studies. Risk of bias was assessed using the Cochrane Risk of Bias Tool (RoB 2.0). The meta-analysis was conducted by RevMan 5.3. RESULTS: The results of this study will be published in a peer-reviewed publication. CONCLUSION: This systematic review and meta-analysis will provide evidence for the efficacy and safety of TCM retention enema in the treatment of anal sinusitis.


Asunto(s)
Enema , Sinusitis , Humanos , Enema/efectos adversos , Medicina Tradicional China/métodos , Metaanálisis como Asunto , Sinusitis/terapia , Revisiones Sistemáticas como Asunto
20.
Int Immunopharmacol ; 101(Pt B): 108216, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34634689

RESUMEN

Herpes zoster (HZ) is a recurrent nerve tissue infection caused by the reactivation of varicella-zoster virus (VZV). At present, two vaccines, the live attenuated vaccine Zostavax™ and AS01B-adjuvanted recombinant subunit vaccine Shingrix™, are commercially available for HZ. The latter is superior to the former in terms of efficacy and duration of immunity in the elderly. In this study, we used glycoprotein E (gE) as an antigen, and investigated the effects of various adjuvants (MF59, MF59/CpG 2006, and MF59/QS-21) on the immune response of C57BL/6J mice to find an alternative adjuvant to AS01B-like adjuvant of liposome/QS-21/MPL. In addition to safety, the gE-specific antibody, IgG antibody subtype, and cytokine secretion by splenocytes, and cell-mediated immune responses were determined using ELISA and ELISPOT assays, respectively. Our results showed no significant effects on the body weight, temperature, or behavior of mice vaccinated with PBS or all adjuvanted vaccines. All adjuvanted vaccine groups showed significantly higher gE-specific IgG antibody levels than the gE-alone group on day 28 after the first vaccine dose. In addition, all adjuvants induced a remarkable increase in both IgG1 and IgG2b levels. However, MF59/QS-21 and MF59/CpG 2006 showed comparable capacities to those of liposome/QS-21/MPL in increasing the IgG2c levels, being superior to MF59. Further investigation revealed that MF59 only induced a limited increase in the levels of Th1 and Th2 cytokines, while MF59/QS-21, MF59/CpG 2006, and liposome/QS-21/MPL led to a significant increase in the secretion of interferon gamma (IFN-γ), IL-2, IL-4, and IL-10 and showed a Th1-biased immune response. Moreover, MF59/QS-21, MF59/CpG 2006, and liposome/QS-21/MPL adjuvanted vaccines resulted in comparable gE-specific IFN-γ + immune cell responses. These results suggest that the combination of MF59 with QS-21 or CpG 2006 may be a promising adjuvant candidate for subunit HZ vaccines. Further investigations are needed to illustrate their durability and efficacy in aged mice.


Asunto(s)
Herpes Zóster/prevención & control , Liposomas , Nanoestructuras , Proteínas Virales/inmunología , Vacunas Virales/inmunología , Adyuvantes Inmunológicos , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/clasificación , Femenino , Inmunoglobulina G/sangre , Interferón gamma , Ratones , Ratones Endogámicos C57BL , Subunidades de Proteína , Bazo/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA