Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Int J Biol Macromol ; 276(Pt 2): 133773, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992554

RESUMEN

This study provided evidence that the inclusion of hydrolysable tannin (HT) in high soybean meal (SBM) diets improved growth performance and glycolipid metabolism of largemouth bass (Micropterus salmoides). In vivo, various levels of HT were added to high SBM diets and fed to largemouth bass (initial weight: 6.00 ± 0.03 g) for 56 days. Results showed that a high level of SBM led to the reduction in growth performance, as evidenced by decreased weight gain rate and impaired hepatic function. Dietary supplementation with HT (1.0 g/kg) improved growth performance of largemouth bass, accompanied by the enhancements in hepatic antioxidant capacity and glycolipid metabolism. In vitro, HT facilitated glucose utilization in hepatocytes and positively influenced the modulation of crucial genes within the PI3K/Akt signaling pathway. Conversely, administration of LY294002 (a PI3K inhibitor) reversed the detrimental effects observed in hepatocytes exposed to high glucose levels. Overall, incorporating HT (1.0 g/kg) into the diet enhanced liver health and improved the absorption and utilization of SBM in largemouth bass, potentially achieved through modulation of the PI3K/Akt signaling pathway.

2.
Front Microbiol ; 15: 1403011, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39027099

RESUMEN

The direct feeding value of distillers grains is low due to the presence of higher cellulose, lignin and anti-nutritional factors such as mannan and xylan. In this study, complex enzymes and probiotic flora based on "probiotic enzyme synergy" technology were used to produce fermented distillers grains. The optimal substrate ratio, moisture content, fermentation time and temperature were determined. Subsequently, scale-up experiments were conducted to determine the performance of fermented feed. The results showed that multi-probiotic (Lactobacillus casei, Bacillus subtilis, Saccharomyces cerevisiae, and Aspergillus oryzae) cooperated with complex enzymes (glucanase, mannanase, xylanase) showed excellent fermentation effect, crude protein, trichloroacetic acid soluble protein and fat increased by 31.25, 36.68, and 49.11% respectively, while crude fiber, acidic fiber and neutral fiber decreased by 34.24, 26.91, and 33.20%, respectively. The anti-nutritional factors mannan and arabinoxylan were reduced by 26.96 and 40.87%, respectively. Lactic acid, acetic acid, and propionic acid in the fermented organic acids increased by 240.93, 76.77, and 89.47%, respectively. Butyric acid increased significantly from scratch, and the mycotoxin degradation effect was not significant. This study provides a potential approach for high-value utilization of distillers grains.

3.
Int J Biol Macromol ; 274(Pt 2): 133443, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38942405

RESUMEN

Lignocellulose is an abundant renewable bio-macromolecular complex, which can be used to produce biomethane and other high-value products. The lignin, presents in lignocellulose is typically regarded as an inhibitor of anaerobic digestion. Therefore, it is crucial to develop a novel selective separation strategy to achieve efficient biomethane production and all-component utilization of biomass. Hence, a combination of two-step pretreatment and solid-state anaerobic digestion was employed to enhance the production of biomethane and to generate valuable chemicals from poplar waste. Optimal conditions (4 % acetic acid, 170 °C, and 40 min) resulted in 70.85 % xylan removal, yielding 50.28 % xylo-oligosaccharides. The effect of a strong acid 4-CSA-based novel three-constituent DES on delignification was investigated from 80 °C to 100 °C; the cellulose content of DES pretreated poplar increased from 64.11 % to 80.92 %, and the delignification rate increased from 49.0 % to 90.4 %. However, high delignification of the pretreated poplar (DES-100 and DES-110) led to a rapid accumulation of volatile organic acids during the hydrolysis and acidogenesis stages, resulting in methanogenesis inhibition. The highest biomethane yield of 208 L/kg VS was achieved with DES-80 (49.0 % delignification), representing a 148 % improvement compared over untreated poplar. This approach demonstrates the potential for comprehensive utilization of all components of biomass waste.


Asunto(s)
Lignina , Metano , Populus , Lignina/química , Populus/química , Populus/metabolismo , Metano/química , Metano/metabolismo , Anaerobiosis , Hidrólisis , Oligosacáridos/química , Biomasa , Glucuronatos/química , Residuos
4.
Int J Biol Macromol ; 270(Pt 2): 132465, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38768909

RESUMEN

The enhanced utilization of biomass-derived chemicals for the generation of high value aromatics through an advanced catalytic strategy has captured considerable attention within the realm of eco-friendly manufacturing. This work presented four innovative three-dimensional rod-shaped mesoporous Ce-based MOF materials, which were coupled with a H-donor solvent to facilitate vanillin hydrodeoxygenation and macromolecular lignin. Under the optimized conditions (30 mg CoCe@C catalyst, 2 MPa N2 pressure, 15 mL isopropanol, 190 °C, and 5 h), the CoCe@C catalyst achieved nearly complete conversion of vanillin and demonstrated 87.8 % selectivity in the hydrogen-donor solvent. The characterization findings suggested that the synergy between metallic Co and oxygen vacancy sites enabled the effective activation of CHO group in vanillin, leading to formation of reactive product MMP. In addition, the optimal CoCe@C catalyst could also achieve macromolecular lignin hydrodeoxygenation to obtain high yield of lignin oil products with narrower molecular weight distribution. This study presented a viable approach for the concurrent utilization of lignin derivatives in the generation of high value fuels and chemicals.


Asunto(s)
Lignina , Estructuras Metalorgánicas , Oxígeno , Fenoles , Lignina/química , Catálisis , Oxígeno/química , Estructuras Metalorgánicas/química , Fenoles/química , Cobalto/química , Benzaldehídos/química
5.
Langmuir ; 40(22): 11450-11459, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38777791

RESUMEN

The electrooxidation of 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid (FDCA) demonstrated its unique superiority, not only in reducing overpotential and improving energy conversion efficiency for green hydrogen production but also in utilizing abundant biomass resources and producing high-value-added chemicals. However, designing highly efficient electrocatalysts for HMF electrooxidation (HMF-EOR) with low cost and high performance for large-scale production remained a huge challenge. Herein, we introduced an easy one-step activation process to produce P-doped porous biochar loaded with multiple crystal surfaces exposed to CoP2O6 catalysts (CoP2O6@PC), which exhibited outstanding electrooxidation performance. To achieve a current density of 50 mA cm-2, only a low overpotential of 200 mV was needed for the electrooxidation of HMF in 1.0 M KOH + 10 mM HMF. This performance far surpassed that of other similar materials. CoP2O6@PC exhibited outstanding HMF-EOR performance with high conversion (nearly 100%), selectivity (97.1%), faradaic efficiency (95.3%), and robust stability. This work represents a promising strategy to fabricate macroscale and low-cost HMF-EOR electrocatalysts and achieve potential industrial applications of HMF-EOR.

6.
Adv Sci (Weinh) ; 11(22): e2308040, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581142

RESUMEN

The shortage and unevenness of fossil energy sources are affecting the development and progress of human civilization. The technology of efficiently converting material resources into energy for utilization and storage is attracting the attention of researchers. Environmentally friendly biomass materials are a treasure to drive the development of new-generation energy sources. Electrochemical theory is used to efficiently convert the chemical energy of chemical substances into electrical energy. In recent years, significant progress has been made in the development of green and economical electrocatalysts for oxygen reduction reaction (ORR). Although many reviews have been reported around the application of biomass-derived catalytically active carbon (CAC) catalysts in ORR, these reviews have only selected a single/partial topic (including synthesis and preparation of catalysts from different sources, structural optimization, or performance enhancement methods based on CAC catalysts, and application of biomass-derived CACs) for discussion. There is no review that systematically addresses the latest progress in the synthesis, performance enhancement, and applications related to biomass-derived CAC-based oxygen reduction electrocatalysts synchronously. This review fills the gap by providing a timely and comprehensive review and summary from the following sections: the exposition of the basic catalytic principles of ORR, the summary of the chemical composition and structural properties of various types of biomass, the analysis of traditional and the latest popular biomass-derived CAC synthesis methods and optimization strategies, and the summary of the practical applications of biomass-derived CAC-based oxidative reduction electrocatalysts. This review provides a comprehensive summary of the latest advances to provide research directions and design ideas for the development of catalyst synthesis/optimization and contributes to the industrialization of biomass-derived CAC electrocatalysis and electric energy storage.

7.
Bioresour Technol ; 399: 130614, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513925

RESUMEN

With the rapid development of synthetic biology, researchers can design, modify, or even synthesize microorganisms de novo, and microorganisms endowed with unnatural functions can be considered "artificial life" and facilitate the development of functional products. Based on this concept, researchers can solve critical problems related to the insufficient supply of natural products, such as low yields, long production cycles, and cumbersome procedures. Due to its superior performance and unique physiological and biochemical characteristics, Yarrowia lipolytica is a favorable chassis cell used for green biomanufacturing by numerous researchers. This paper mainly reviews the development of synthetic biology techniques for Y. lipolytica and summarizes the recent research progress on the synthesis of natural products in Y. lipolytica. This review will promote the continued innovative development of Y. lipolytica by providing theoretical guidance for research on the biosynthesis of natural products.


Asunto(s)
Productos Biológicos , Yarrowia , Yarrowia/genética , Biología Sintética , Ingeniería Metabólica
8.
Small ; : e2311163, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308114

RESUMEN

Carbon materials hold significant promise in electrocatalysis, particularly in electrochemical CO2 reduction reaction (eCO2 RR) and two-electron oxygen reduction reaction (2e- ORR). The pivotal factor in achieving exceptional overall catalytic performance in carbon catalysts is the strategic design of specific active sites and nanostructures. This work presents a comprehensive overview of recent developments in carbon electrocatalysts for eCO2 RR and 2e- ORR. The creation of active sites through single/dual heteroatom doping, functional group decoration, topological defect, and micro-nano structuring, along with their synergistic effects, is thoroughly examined. Elaboration on the catalytic mechanisms and structure-activity relationships of these active sites is provided. In addition to directly serving as electrocatalysts, this review explores the role of carbon matrix as a support in finely adjusting the reactivity of single-atom molecular catalysts. Finally, the work addresses the challenges and prospects associated with designing and fabricating carbon electrocatalysts, providing valuable insights into the future trajectory of this dynamic field.

9.
Int J Biol Macromol ; 261(Pt 2): 129857, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307438

RESUMEN

The application of CO2 supercritical fluid (SCF) technology has developed rapidly because of its non-toxic, environmentally friendly, mild reaction conditions and safety. The SCF technology can effectively speed up the reaction process of nano-material synthesis, and maintains a high degree of controllability and repeatability. This study mainly included carboxymethyl chitosan sodium salt (CCS), citral (CT), p-coumaric acid (CA), and ZnSO4 as raw materials to prepare CCS-CT-CA-Zn complex as a pH-responsive agent and was investigated using supercritical fluid technique. The coordination structure of Bridge-CCS-CT-CH3COO-CA-Zn-Schiff base/OH and the morphology of the complex agents were verified. The prepared CCS-CT-CA-Zn complex showed good dispersion and uniformity (mean size: 852 ± 202 nm, PdI: 0.301, and mean zeta potential: -31 ± 6 mV). Also, it has a good pH responsive release in an acid environment. Besides, both of CCS-CT-CA-Zn complex (DS-B) and its decomposed mixture in acid (DS-A) demonstrated significant antioxidant and anti-vibrio activity. Moreover, both DS-B complex and DS-A mixture inhibited biofilm formation, swimming, and swarming motilities of V. parahaemolyticus in a dose-dependent manner. This work will provide a scientific basis for the further design and development of natural products derived antibacterial-antioxidant complex agents, food additives and feed additives.


Asunto(s)
Monoterpenos Acíclicos , Quitosano , Quitosano/farmacología , Quitosano/química , Zinc/química , Bases de Schiff/farmacología , Bases de Schiff/química , Antioxidantes/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Concentración de Iones de Hidrógeno
10.
Angew Chem Int Ed Engl ; 63(16): e202319983, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38404154

RESUMEN

Herein, an interfacial electron redistribution is proposed to boost the activity of carbon-supported spinel NiCo2O4 catalyst toward oxygen conversion via Fe, N-doping strategy. Fe-doping into octahedron induces a redistribution of electrons between Co and Ni atoms on NiCo1.8Fe0.2O4@N-carbon. The increased electron density of Co promotes the coordination of water to Co sites and further dissociation. The generation of proton from water improves the overall activity for the oxygen reduction reaction (ORR). The increased electron density of Ni facilitates the generation of oxygen vacancies. The Ni-VO-Fe structure accelerates the deprotonation of *OOH to improve the activity toward oxygen evolution reaction (OER). N-doping modulates the electron density of carbon to form active sites for the adsorption and protonation of oxygen species. Fir wood-derived carbon endows catalyst with an integral structure to enable outstanding electrocatalytic performance. The NiCo1.8Fe0.2O4@N-carbon express high half-wave potential up to 0.86 V in ORR and low overpotential of 270 mV at 10 mA cm-2 in OER. The zinc-air batteries (ZABs) assembled with the as-prepared catalyst achieve long-term cycle stability (over 2000 cycles) with peak power density (180 mWcm-2). Fe, N-doping strategy drives the catalysis of biomass-derived carbon-based catalysts to the highest level for the oxygen conversion in ZABs.

11.
iScience ; 27(3): 109064, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38375219

RESUMEN

Titanium silicate zeolite (TS-1) is widely used in the research on selective oxidations of organic substrates by H2O2. Compared with the chlorohydrin process and the hydroperoxidation process, the TS-1 catalyzed hydroperoxide epoxidation of propylene oxide (HPPO) has advantages in terms of by-products and environmental friendliness. This article reviews the latest progress in propylene epoxidation catalyzed by TS-1, including the HPPO process and gas phase epoxidation. The preparation and modification of TS-1 for green and sustainable production are summarized, including the use of low-cost feedstocks, the development of synthetic routes, strategies to enhance mass transfer in TS-1 crystal and the enhancement of catalytic performance after modification. In particular, this article summarizes the catalytic mechanisms and advanced characterization techniques for propylene epoxidation in recent years. Finally, the present situation, development prospect and challenge of propylene epoxidation catalyzed by TS-1 were prospected.

12.
ChemSusChem ; 17(14): e202301779, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38416074

RESUMEN

Given the growing environmental and energy problems, developing clean, renewable electrochemical energy storage devices is of great interest. Zn-air batteries (ZABs) have broad prospects in energy storage because of their high specific capacity and environmental friendliness. The unavailability of cheap air electrode materials and effective and stable oxygen electrocatalysts to catalyze air electrodes are main barriers to large-scale implementation of ZABs. Due to the abundant biomass resources, self-doped heteroatoms, and unique pore structure, biomass-derived catalytically active carbon materials (CACs) have great potential to prepare carbon-based catalysts and porous electrodes with excellent performance for ZABs. This paper reviews the research progress of biomass-derived CACs applied to ZABs air electrodes. Specifically, the principle of ZABs and the source and preparation method of biomass-derived CACs are introduced. To prepare efficient biomass-based oxygen electrocatalysts, heteroatom doping and metal modification were introduced to improve the efficiency and stability of carbon materials. Finally, the effects of electron transfer number and H2O2 yield in ORR on the performance of ZABs were evaluated. This review aims to deepen the understanding of the advantages and challenges of biomass-derived CACs in the air electrodes of ZABs, promote more comprehensive research on biomass resources, and accelerate the commercial application of ZABs.

13.
J Colloid Interface Sci ; 658: 22-31, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38091795

RESUMEN

Designing non-precious catalysts to synergistically achieve a facilitated exposure of abundant active sites is highly desired but remains a significant challenge. Herein, a hetero-structured catalyst CoP-Co supported on porous g-C3N4 nanosheets (CoP-Co/CN-I) was prepared by pyrolysis and P-inducing strategy. The optimal catalyst achieves a turnover frequency (TOF) of 26 min-1 at room temperature and the apparent activation energy (Ea) is 35.5 kJ·mol-1. The catalytic activity is ranked top among the non-precious metal phosphides or the other supports. Meanwhile, the catalytic activity has no significant decrease even after 5 cycles. The CoP/Co interfaces provide richly exposed active sites, optimize hydrogen/water absorption free energy via electronic coupling, and thus improve the catalytic activity. The experimental results reveal that the CoP/Co heterojunction improves the catalytic activity due to the construction of dual-active sites. This research facilitates the innovative construction of non-noble metal catalysts to meet industrial demand for heterogeneous catalysis.

14.
Waste Manag ; 174: 282-289, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38071868

RESUMEN

The resource utilization and valorization of waste tires (WT) are of significant importance in reducing environmental pollution. To produce high-value p-cymene from WT, we propose a catalytic cascade process combining hydropyrolysis and catalytic gas-phase hydrotreating in a two-stage fixed-bed reactor. The effect of catalysts prepared with three different acidic supports on the hydrogenation/dehydrogenation of limonene, a compound derived from the hydropyrolysis of WT, was investigated. The p-cymene formation could be controlled by optimizing process parameters, including hydropyrolysis temperature, hydrogenation temperature, and catalyst-to-feedstock ratio (C/F). Experimental results indicated that, in the absence of a catalyst, limonene was the main product of WT depolymerization. Under optimized conditions (hydropyrolysis temperature of 425 ℃, hydrotreating temperature of 400 ℃, C/F of 10:1, and reaction pressure of 0.15 MPa), the highest relative content of p-cymene (79.1%) was obtained over the Pd/SBA-15 catalyst. This demonstrates that our proposed catalytic cascade process of hydropyrolysis and selective gas-phase hydrogenation/dehydrogenation can convert WT into p-cymene with high added value.


Asunto(s)
Cimenos , Hidrogenación , Limoneno , Temperatura , Catálisis
15.
Int J Biol Macromol ; 256(Pt 1): 128359, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029907

RESUMEN

In view of the insecurity of encode information storage based on fluorescence switch single-stage encryption, a fluorescent hydrogel for multistage data security encryption were proposed, named as polyvinyl alcohol/dialdehyde cellulose nanofibrils/carbon quantum dots hydrogel. Herein, the interpenetrating network was formed by chemically crosslinking between polyvinyl alcohol (PVA) and dialdehyde cellulose nanofibrils (DACNF). Additionally, nitrogen-doped carbon quantum dots (CDs) synthesized by one-step hydrothermal method were introduced into the above hydrogel system by hydrogen bonds. The resultant fluorescent hydrogels possessed high stretchability up to 530 %, good strength of 0.96 MPa, Fe3+-responsive fluorescence quenching, fluorescence recovery triggered by ascorbic acid and borax-triggered shape memory. Moreover, various complex 3D hydrogel geometries were fabricated by folding/assembling 2D fluorescent hydrogel sheets, extending data encryption capability from 2D plane to 3D space. More remarkably, the 3D data encryption-erasing process of fluorescent hydrogel was realized by the strategy of alternating treatment of Fe3+ solution and ascorbic acid solution. This work provided a facile and general strategy for constructing high security important information encryption and protection.


Asunto(s)
Aldehídos , Hidrogeles , Alcohol Polivinílico , Ácido Ascórbico , Carbono , Colorantes
16.
Small ; 20(4): e2305782, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37718497

RESUMEN

Due to their unique electronic and structural properties, single-atom catalytic materials (SACMs) hold great promise for the oxygen reduction reaction (ORR). Coordinating environmental and engineering strategies is the key to improving the ORR performance of SACMs. This review summarizes the latest research progress and breakthroughs of SACMs in the field of ORR catalysis. First, the research progress on the catalytic mechanism of SACMs acting on ORR is reviewed, including the latest research results on the origin of SACMs activity and the analysis of pre-adsorption mechanism. The study of the pre-adsorption mechanism is an important breakthrough direction to explore the origin of the high activity of SACMs and the practical and theoretical understanding of the catalytic process. Precise coordination environment modification, including in-plane, axial, and adjacent site modifications, can enhance the intrinsic catalytic activity of SACMs and promote the ORR process. Additionally, several engineering strategies are discussed, including multiple SACMs, high loading, and atomic site confinement. Multiple SACMs synergistically enhance catalytic activity and selectivity, while high loading can provide more active sites for catalytic reactions. Overall, this review provides important insights into the design of advanced catalysts for ORR.

17.
Small ; : e2307662, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072770

RESUMEN

The problem in d-band center modulation of transition metal-based catalysts for the rate-determining steps of oxygen conversion is an obstacle to boost the electrocatalytic activity by accelerating proton coupling. Herein, the Co doping to FeP is adopted to modify the d-band center of Fe. Optimized Fe sites accelerate the proton coupling of oxygen reduction reaction (ORR) on N-doped wood-derived carbon through promoting water dissociation. In situ generated Fe sites optimize the adsorption of oxygen-related intermediates of oxygen evolution reaction (OER) on CoFeP NPs. Superior catalytic activity toward ORR (half-wave potential of 0.88 V) and OER (overpotential of 300 mV at 10 mA cm-2 ) express an unprecedented level in carbon-based transition metal-phosphide catalysts. The liquid zinc-air battery presents an outstanding cycling stability of 800 h (2400 cycles). This research offers a newfangled perception on designing highly efficient carbon-based bifunctional catalysts for ORR and OER.

18.
Small ; : e2305405, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072804

RESUMEN

As the cleanest energy source, hydrogen has been followed with interest by researchers around the world. However, due to the internal low density of hydrogen, it cannot be stored and used efficiently which limits the hydrogen application on a huge scale. Chemical hydrogen storage is considered as a useful method for efficient handling and storage. Due to its excellent safety, formic acid stands out. It is worth noting that the matter and energy conversion is established based on formic acid, which is not referred to in the previous documentation. In this review, the latest development of research on heterogeneous catalysis via production and application of formic acid for energy application is reported. The matter and energy conversion based on formic acid are both discussed systematically. More importantly, with formic acid as the node, biomass energy shows potential to be in a dominant position in the energy conversion process. In addition, the catalytic mechanism is also mentioned. This review can provide the current state in this field and the new inspirations for developing superior catalytic systems.

19.
Commun Chem ; 6(1): 273, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38087001

RESUMEN

Feedstock properties play a crucial role in thermal conversion processes, where understanding the influence of these properties on treatment performance is essential for optimizing both feedstock selection and the overall process. In this study, a series of van Krevelen diagrams were generated to illustrate the impact of H/C and O/C ratios of feedstock on the products obtained from six commonly used thermal conversion techniques: torrefaction, hydrothermal carbonization, hydrothermal liquefaction, hydrothermal gasification, pyrolysis, and gasification. Machine learning methods were employed, utilizing data, methods, and results from corresponding studies in this field. Furthermore, the reliability of the constructed van Krevelen diagrams was analyzed to assess their dependability. The van Krevelen diagrams developed in this work systematically provide visual representations of the relationships between feedstock and products in thermal conversion processes, thereby aiding in optimizing the selection of feedstock and the choice of thermal conversion technique.

20.
Nanomicro Lett ; 16(1): 22, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37982913

RESUMEN

Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety, mechanical and thermal stability and easy-to-direct stacking. Hydrogel electrolytes are appealing solid-state electrolytes because of eco-friendliness, high conductivity and intrinsic flexibility. However, the electrolyte/electrode interfacial contact and anti-freezing properties of current hydrogel electrolytes are still challenging for practical applications of zinc-ion capacitors. Here, we report a class of hydrogel electrolytes that couple high interfacial adhesion and anti-freezing performance. The synergy of tough hydrogel matrix and chemical anchorage enables a well-adhered interface between hydrogel electrolyte and electrode. Meanwhile, the cooperative solvation of ZnCl2 and LiCl hybrid salts renders the hydrogel electrolyte high ionic conductivity and mechanical elasticity simultaneously at low temperatures. More significantly, the Zn||carbon nanotubes hybrid capacitor based on this hydrogel electrolyte exhibits low-temperature capacitive performance, delivering high-energy density of 39 Wh kg-1 at -60 °C with capacity retention of 98.7% over 10,000 cycles. With the benefits of the well-adhered electrolyte/electrode interface and the anti-freezing hydrogel electrolyte, the Zn/Li hybrid capacitor is able to accommodate dynamic deformations and function well under 1000 tension cycles even at -60 °C. This work provides a powerful strategy for enabling stable operation of low-temperature zinc-ion capacitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA