Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 898
Filtrar
1.
Anal Chem ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250834

RESUMEN

Current loop-mediated isothermal amplification (LAMP)-coupled clustered regularly interspaced short palindromic repeats (LAMP-CRISPR) biosensing in two-step or one-step formats has been applied to next-generation accurate molecular diagnosis. However, two-step LAMP-CRISPR assays intrinsically confront aerosol contamination, while one-step assays possess a compromised detection performance. To this end, we propose an enhanced two-step LAMP-CRISPR assay (ETL-CRISPR) with an engineered Zst polymerase to mediate ultrasensitive DNA detection and thoroughly eliminate aerosol contamination. Instead of supplementing any dTTP, the newly engineered Zst polymerase can efficiently polymerize four oligonucleotides (dATP, dCTP, dGTP, and dUTP), thereby enabling contamination-free and ultrasensitive ETL-CRISPR assay. By targeting the L1 gene of human papillomaviruses (HPV) 16 and the E7 gene of HPV18, our ETL-CRISPR assay achieves high specificity and single-copy level sensitivity within 1 h. Furthermore, we validated the assay by using 85 HPV clinical swab samples with an accuracy of 98.8%, which is comparable to the real-time quantitative polymerase chain reaction. Therefore, ETL-CRISPR provides a straightforward strategy for the contamination-free and ultrasensitive point-of-care diagnosis of clinical pathogens.

2.
Neural Netw ; 179: 106496, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39285609

RESUMEN

Filter pruning has achieved remarkable success in reducing memory consumption and speeding up inference for convolutional neural networks (CNNs). Some prior works, such as heuristic methods, attempted to search for suitable sparse structures during the pruning process, which may be expensive and time-consuming. In this paper, an efficient cross-layer importance evaluation (CIE) method is proposed to automatically calculate proportional relationships among convolutional layers. Firstly, every layer is pruned separately by grid sampling way to obtain the accuracy of the model for all sampling points. And then, contribution matrices are built to describe the importance of each layer to model accuracy. Finally, the binary search algorithm is used to search the optimal sparse structure under a target pruned value. Extensive experiments on multiple representative image classification tasks demonstrate that proposed method acquires better compression performance under a little time cost compared to existing pruning algorithms. For instance, it reduces more than 50% FLOPs with only a small loss of 0.93% and 0.43% in the top-1 and top-5 accuracy for ResNet50, respectively. At the cost of only 0.24% accuracy loss, the pruned VGG19 model parameters are successfully compressed by 27.23× and the throughput has increased by 2.46×. On the whole, CIE has an excellent effect on the deployment and application of the CNNs model in edge device in terms of efficiency and accuracy.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador/métodos , Humanos
3.
J Thorac Dis ; 16(8): 5274-5284, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39268132

RESUMEN

Background: There is a shortage of reliable predictive models to provide valuable prognostic information for early esophageal squamous cell carcinoma (ESCC) without lymph node metastasis (LNM). We aimed to develop and validate a nomogram using the prognostic factors in T1N0 ESCC patients. Methods: Patients with pathological T1N0 ESCC who underwent esophagectomy between 2014 and 2021 at three institutes were reviewed. The prognostic factors were evaluated by Cox proportional hazards model and a nomogram was developed. Patients were divided into high- and low-risk groups based on cut-off value of total points in the nomogram. Overall survival (OS) was estimated by the Kaplan-Meier method and compared using the log-rank test. Results: A total of 275 patients were included and split into training (n=180) and external validation (n=95) cohorts. In the training cohort, multivariable analysis showed that the surgical approach, T1 substage, and carcinoembryonic antigen (CEA) level were independent prognostic factors. The developed nomogram had relatively high performance, with the area under the receiver operating characteristic (ROC) curve (AUC) of 0.783, 0.711 and 0.612 for 1-, 3-, and 5-year OS, respectively. The calibration curves showed that the predicted probability was in good agreement with the actual probability. Forty-seven was determined as cut-off value of total points. High-risk group (n=148) showed a significant poor OS than low-risk group (n=127) (P<0.001). Conclusions: Left surgical approach, stage T1b, and higher CEA were associated with poorer prognosis in T1N0 ESCC patients. The nomogram demonstrated a good performance to predict the individual survival.

4.
Biomol Biomed ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217430

RESUMEN

Knee osteoarthritis (KOA) is a degenerative joint disease characterized by pain, stiffness, and impaired mobility, with current therapies offering limited efficacy. This study investigates the epigenetic role of nuclear receptor-binding SET domain protein 1 (NSD1) in KOA pathogenesis. A KOA mouse model was established, and adenoviral vectors were employed to upregulate Nsd1 and inhibit SRY-box transcription factor 9 (Sox9), followed by histopathological assessments. We examined changes in cell morphology, proliferation, viability, and ferroptosis-related markers. The expression of Nsd1, Sox9, and acyl-CoA synthetase long-chain family member 4 (Acsl4) was analyzed, along with the enrichment of Nsd1 and dimethylated lysine 36 of histone 3 (H3K36me2) on the Sox9 promoter and Sox9 on the Acsl4 promoter. Additionally, the binding relationship between Sox9 and the Acsl4 promoter sequence was analyzed. Our results revealed that Nsd1 expression was reduced in KOA mouse tissues and interleukin (IL)-1ß-stimulated chondrocytes. Nsd1 upregulation alleviated KOA, promoted chondrocyte proliferation and viability, and inhibited ferroptosis. Mechanistically, Nsd1 enhanced H3K36me2 to upregulate Sox9 expression, which in turn suppressed Acsl4 expression and ferroptosis. Sox9 inhibition partially reversed the protective effect of Nsd1 overexpression. In summary, Nsd1 upregulation mitigates chondrocyte ferroptosis and ameliorates KOA by modulating H3K36me2 to upregulate Sox9 and downregulate Acsl4 expression.

5.
Cancer Med ; 13(16): e70108, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39161098

RESUMEN

BACKGROUND: The optimal treatment for esophageal squamous cell carcinoma (ESCC) patients with postoperative recurrence remains controversial. We aimed to evaluate the effects of radiotherapy (RT) and chemoradiotherapy (CRT) on postoperative recurrence in ESCC patients. METHODS: Recurrence ESCC patients who received salvage RT and CRT from January 2015 to January 2019 were retrospectively reviewed. Post-recurrence survival (PRS) and prognostic factors were evaluated by Kaplan-Meier and Cox proportional hazards models, respectively. Subgroup analyses were performed based on pathological lymph node (LN) status (negative/positive) to evaluate the differences in salvage treatments and toxic reaction. RESULTS: A total of 170 patients were enrolled, with a median age of 60 years (range 43-77). No significant difference was found in the median PRS between the salvage RT and CRT groups (p > 0.05). Multivariate analysis revealed that TNM stage III and IV, macroscopic medullary type, and distant metastasis recurrence pattern were independent prognostic factors (all p < 0.05) for PRS. Salvage treatment was not associated with PRS (p = 0.897). However, in patients with negative LN, CRT was associated with prolonged survival (p = 0.043) and had no significant differences in toxic reactions compared to RT (p = 0.924). In addition, RT showed better prognoses (p = 0.020) and lower toxic reactions (p = 0.030) than CRT in patients with positive LNs. CONCLUSIONS: Based on prognosis and toxic reactions, ESCC recurrence patients with negative LNs could benefit from CRT, but RT should be recommended for patients with positive LNs.


Asunto(s)
Quimioradioterapia , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Recurrencia Local de Neoplasia , Terapia Recuperativa , Humanos , Persona de Mediana Edad , Masculino , Femenino , Carcinoma de Células Escamosas de Esófago/terapia , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/mortalidad , Anciano , Quimioradioterapia/métodos , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/mortalidad , Estudios Retrospectivos , Adulto , Pronóstico , Estadificación de Neoplasias , Estimación de Kaplan-Meier
6.
J Integr Plant Biol ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185936

RESUMEN

Anchorene, identified as an endogenous bioactive carotenoid-derived dialdehyde and diapocarotenoid, affects root development by modulating auxin homeostasis. However, the precise interaction between anchorene and auxin, as well as the mechanisms by which anchorene modulates auxin levels, remain largely elusive. In this study, we conducted a comparative analysis of anchorene's bioactivities alongside auxin and observed that anchorene induces multifaceted auxin-like effects. Through genetic and pharmacological examinations, we revealed that anchorene's auxin-like activities depend on the indole-3-pyruvate-dependent auxin biosynthesis pathway, as well as the auxin inactivation pathway mediated by Group II Gretchen Hagen 3 (GH3) proteins that mainly facilitate the conjugation of indole-3-acetic acid (IAA) to amino acids, leading to the formation of inactivated storage forms. Our measurements indicated that anchorene treatment elevates IAA levels while reducing the quantities of inactivated IAA-amino acid conjugates and oxIAA. RNA sequencing further revealed that anchorene triggers the expression of numerous auxin-responsive genes in a manner reliant on Group II GH3s. Additionally, our in vitro enzymatic assays and biolayer interferometry (BLI) assay demonstrated anchorene's robust suppression of GH3.17-mediated IAA conjugation with glutamate. Collectively, our findings highlight the significant role of carotenoid-derived metabolite anchorene in modulating auxin homeostasis, primarily through the repression of GH3-mediated IAA conjugation and inactivation pathways, offering novel insights into the regulatory mechanisms of plant bioactive apocarotenoids.

7.
Angew Chem Int Ed Engl ; : e202415312, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192698

RESUMEN

Multi-mode emissive materials with stimuli-responsive producing invisible signals are very attractive for advanced security applications, but development of such materials remains highly challenging. In this work, oxygen-doped carbon nitrides (O-CNs) are prepared via microwave-assisted heating of urea, which exhibit ultraviolet (UV) solid-state fluorescence (SSFL), visible room temperature phosphorescence (RTP) and thermal-stimuli production of invisible UV delayed fluorescence (DF) properties. Further studies confirmed that the SSFL and RTP could be attributed to the introduction of oxygen functional group (e.g., C=O) in the skeleton of O-CNs, thus minimizing the aggregation caused quenching effect, facilitating intersystem crossing, and stabilizing the excited triplet states. The specific thermal-stimuli production of UV DF is deemed to be the relatively large energy gap between ground and excited singlet states as well as an effective triplet-triplet annihilation. Notably, the emission maximum of UV DF locates at ~310 nm with an ultra-narrow full width at half maximum (FWHM) down to 19 nm, so it is completely invisible to the naked eyes, but detectable by a UV camera. To employ the unique characteristics of O-CNs, security protection strategies with superior concealment by virtue of the thermal-stimuli quenching visible RTP and meanwhile producing invisible UV DF are demonstrated.

8.
J Comput Chem ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135268

RESUMEN

The two-dimensional (2D) monolayer material MoSi2N4 was successfully synthesized in 2020[Hong et al., Science 369, 670, (2020)], exhibiting a plethora of new phenomena and unusual properties, with good stability at room temperature. However, MA2Z4 family monolayer materials involve primarily transition metal substitutions for M atoms. In order to address the research gap on lanthanide and actinide MA2Z4 materials, this work conducts electronic structure calculations on novel 2D MSi2N4 (M = La, Eu) monolayer materials by employing first-principles methods and CASTEP. High carrier mobility is discovered in the indirect bandgap semiconductor 2D LaSi2N4 monolayer (~5400 cm2 V-1 s-1) and in the spin (spin-down channel) carrier mobility of the half-metallic ferromagnetic EuSi2N4 monolayer (~2800 cm2 V-1 s-1). EuSi2N4 monolayer supplements research on spin carrier mobility in half-metallic ferromagnetic monolayer materials at room temperature and possesses a magnetic moment of 5 µB, which should not be underestimated. Furthermore, due to the unique electronic band structure of EuSi2N4 monolayer (with the spin-up channel exhibiting metallic properties and the spin-down channel exhibiting semiconductor properties), it demonstrates a 100% spin polarization rate, presenting significant potential applications in fields such as magnetic storage, magnetic sensing, and spintronics.

9.
Cell Oncol (Dordr) ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162991

RESUMEN

BACKGROUND: Neoadjuvant chemoradiotherapy (nCRT) stands as a pivotal therapeutic approach for locally advanced rectal cancer (LARC), yet the absence of a reliable biomarker to forecast its efficacy remains a challenge. Thus, this study aimed to assess whether the proteomic compositions of small extracellular vesicles (sEVs) might offer predictive insights into nCRT response among patients with LARC, while also delving into the proteomic alterations within sEVs post nCRT. METHODS: Plasma samples were obtained from LARC patients both pre- and post-nCRT. Plasma-derived sEVs were isolated utilizing the TIO2-based method, followed by LC-MS/MS-based proteomic analysis. Subsequently, pathway enrichment analysis was performed to the Differentially Expressed Proteins (DEPs). Additionally, ROC curves were generated to evaluate the predictive potential of sEV proteins in determining nCRT response. Public databases were interrogated to identify sEV protein-associated genes that are correlated with the response to nCRT in LARC. RESULTS: A total of 16 patients were enrolled. Among them, 8 patients achieved a pathological complete response (good responders, GR), while the remaining 8 did not achieve a complete response (poor responders, PR). Our analysis of pretreatment plasma-derived sEVs revealed 67 significantly up-regulated DEPs and 9 significantly down-regulated DEPs. Notably, PROC (AUC: 0.922), F7 (AUC: 0.953) and AZU1 (AUC: 0.906) demonstrated high AUC values and significant differences (P value < 0.05) in discriminating between GR and PR patients. Furthermore, a signature consisting of 5 sEV protein-associated genes (S100A6, ENO1, MIF, PRDX6 and MYL6) was capable of predicting the response to nCRT, yielding an AUC of 0.621(95% CI: 0.454-0.788). Besides, this 5-sEV protein-associated gene signature enabled stratification of patients into low- and high-risk group, with the low-risk group demonstrating a longer overall survival in the testing set (P = 0.048). Moreover, our investigation identified 11 significantly up-regulated DEPs and 31 significantly down-regulated DEPs when comparing pre- and post-nCRT proteomic profiles. GO analysis unveiled enrichment in the regulation of phospholipase A2 activity. CONCLUSIONS: Differential expression of sEV proteins distinguishes between GR and PR patients and holds promise as predictive markers for nCRT response and prognosis in patients with LARC. Furthermore, our findings highlight substantial alterations in sEV protein composition following nCRT.

10.
BMC Nurs ; 23(1): 489, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026206

RESUMEN

OBJECTIVE: The aim of this study is to examine the impact of a nursing intervention based on stress system theory, coupled with painting therapy, on children experiencing post-traumatic stress disorder (PTSD) subsequent to an accidental injury. METHODS: The clinical data of 100 children diagnosed with PTSD following accidental injuries were retrospectively analyzed for the period spanning April 2021 to May 2023. There were 48 children who received standard nursing care between April 2021 and April 2022 in the control group, and 52 children who received nursing intervention based on stress system theory combined with painting therapy between May 2022 and May 2023 in the observation group. Scores of PTSD Self-evaluation Scale (PTSD-SS), post-traumatic growth, coping style, quality of life, and family satisfaction were compared between the two groups. RESULTS: Prior to nursing care, the scores of each dimension in the PTSD-SS, post-traumatic growth, coping style, and quality of life were similar between the two groups (P > 0.05). Following nursing intervention, the observation group exhibited lower scores in each dimension of the PTSD-SS compared to the control group. Moreover, the scores in each dimension of the children's version of the Post-Traumatic Growth Inventory (PTGI) were higher in the observation group than in the control group. Additionally, the Confrontation scores in the Medical Coping Modes Questionnaire (MCMQ) were higher in the observation group than in the control group, while the scores of Avoidance and Resignation were lower in the observation group than in the control group. The scores of each dimension in the Pediatric Quality of Life Inventory Measurement Models (PedsQL4.0) were higher than those in the control group (P < 0.05), and the family satisfaction in the observation group (96.15%) was higher than that in the control group (81.25%), with P < 0.05. CONCLUSION: The implementation of nursing intervention based on stress system theory combined with painting therapy in children with PTSD following an accidental injury can alleviate stress, help them actively cope with the condition, promote post-traumatic growth, and improve the quality of life and family satisfaction.

11.
Adv Mater ; : e2314083, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39003611

RESUMEN

Smart stimuli-responsive persistent luminescence materials, combining the various advantages and frontier applications prospects, have gained booming progress in recent years. The trap-controlled property and energy storage capability to respond to external multi-stimulations through diverse luminescence pathways make them attractive in emerging multi-responsive smart platforms. This review aims at the recent advances in trap-controlled luminescence materials for advanced multi-stimuli-responsive smart platforms. The design principles, luminescence mechanisms, and representative stimulations, i.e., thermo-, photo-, mechano-, and X-rays responsiveness, are comprehensively summarized. Various emerging multi-responsive hybrid systems containing trap-controlled luminescence materials are highlighted. Specifically, temperature dependent trapping and de-trapping performance is discussed, from extreme-low temperature to ultra-high temperature conditions. Emerging applications and future perspectives are briefly presented. It is hoped that this review would provide new insights and guidelines for the rational design and performance manipulation of multi-responsive materials for advanced smart platforms.

12.
Orthop Surg ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982570

RESUMEN

BACKGROUND: Osteoporosis is a common metabolic disorder that significantly impacts quality of life in the elderly population. Macrophages play a crucial role in the development of osteoporosis by regulating bone metabolism through cytokine secretion. However, there is a lack of scholarly literature in the field of bibliometrics on this topic. OBJECTIVE: This study provides a detailed analysis of the research focus and knowledge structure of macrophage studies in osteoporosis using bibliometrics. METHODS: The scientific literature on macrophage research in the context of osteoporosis, retrieved from the Web of Science Core Collection (WoSCC) database spanning from January 1999 to December 2023, has been incorporated for bibliometric examination. The data is methodically analyzed and visually represented using analytical and visualization tools including VOSviewer, CiteSpace, Scimago Graphica, the Bibliometrix R package, and Pajek. RESULTS AND CONCLUSIONS: In the last quarter-century, there has been a consistent rise in the quantity of scholarly publications focusing on the relationship between macrophages and osteoporosis, resulting in a total of 1499 research documents. These studies have originated from 45 different countries, with China, South Korea, and the United States being the most prominent contributors, and the United States having the highest frequency of citations. Noteworthy research institutions involved in this field include Shanghai Jiao Tong University, Wonkwang University, Huazhong University of Science and Technology, and Seoul National University. The Journal of Bone and Mineral Research is widely regarded as the premier and most frequently referenced publication in the field. These publications involve the collaboration of 8744 authors, with Lee Myeung Su contributing the most articles, and Takayanagi being the most co-cited author. Key emerging research focal points are encapsulated in keywords such as "mTOR," "BMSCs," "bone regeneration," and "exosome." The relationships between exosome from macrophage sources and those from BMSCs, along with the regulatory role of the mTOR signaling pathway on macrophages, represent crucial directions for future development in this field. This study represents the inaugural comprehensive bibliometric analysis detailing trends and advancements in macrophage research within the osteoporosis domain. It delineates recent frontiers and hotspots, providing valuable insights for researchers in this particular area of study.

13.
Nanotechnology ; 35(39)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38955161

RESUMEN

The type-II Weyl semimetal Td-WTe2is one of the wonder materials for high-performance optoelectronic devices. We report the self-powered Td-WTe2photodetectors and their bias-dependent photoresponse in the visible region (405, 520, 638 nm) driven by the bulk photovoltaic effect. The device shows the responsivity of 15.8 mAW-1and detectivity of 5.2 × 109Jones at 520 nm. Besides, the response time of the WTe2photodetector shows the strong bias-voltage dependent property. This work offers a physical reference for understanding the photoresponse process of Td-WTe2photodetectors.

14.
Anal Chem ; 96(35): 14125-14132, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38978161

RESUMEN

Mitochondrial DNA (mtDNA) is a unique genetic material characterized by maternal inheritance. It possesses a circular structure devoid of histone protection and exhibits low cellular abundance, which poses great challenges for its sensitive and selective detection at the living cell level. Herein, we have designed three bis-naphthylimide probes with varying linker lengths (NANn-OH, n = 0, 2, 6), facilitating the formation of distinct twisted or folded molecular conformations in the free state. These probes emit the red fluorescence around 627 nm with different fluorescence quantum yields (ΦNAN0-OH = 0.0016, ΦNAN2-OH = 0.0136, and ΦNAN6-OH = 0.0125). When encountering mtDNA (0.4-3.4 µg/mL), these probes undergo conformational changes depending on the length of the attached C-strand and exhibit a gradually increasing fluorescence signal around 453 nm. The fluorescence intensity increased to 13.5-fold, 1.9-fold, and 8.2-fold, respectively. Notably, the red fluorescence intensities around 627 nm remain constant throughout this process, thus serving as an inherent correction mechanism for proportional fluorescence signal enhancement to improve selectivity and sensitivity. NAN0-OH, NAN2-OH, and NAN6-OH showed good linearity for mtDNA in the range of 0.4-3.4 µg/mL with detection limits of LODNAN0-OH = 1.04 µg/mL, LODNAN2-OH = 1.10 µg/mL, and LODNAN6-OH = 1.15 µg/mL. Cellular experiments reveal that NAN6-OH effectively monitors curcumin-induced mtDNA damage in HepG-2 cells while enabling monitoring of genetic mtDNA damage. We anticipate that this tool holds significant potential for the precise evaluation of maternal genetic defects, thereby enhancing hypersensitive assessment in clinical medicine.


Asunto(s)
ADN Mitocondrial , Colorantes Fluorescentes , Espectrometría de Fluorescencia , Humanos , ADN Mitocondrial/genética , Colorantes Fluorescentes/química , Fluorescencia , Límite de Detección , Naftalimidas/química
15.
J Phys Chem A ; 128(28): 5459-5472, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38973649

RESUMEN

In this study, we employ density functional theory along with the artificial bee colony algorithm for cluster global optimization to explore the low-lying structures of TeBnq (n = 3-16, q = 0, -1). The primary focus is on reporting the structural properties of these clusters. The results reveal a consistent doping pattern of the tellurium atom onto the in-plane edges of planar or quasi-planar boron clusters in the most energetically stable isomers. Additionally, we simulate the photoelectron spectra of the cluster anions. Through relative stability analysis, we identify three clusters with magic numbers -TeB7-, TeB10, and TeB12. The aromaticity of these clusters is elucidated using adaptive natural density partitioning (AdNDP) and magnetic properties analysis. Notably, TeB7- exhibits a perfect σ-π doubly aromatic structure, while TeB12 demonstrates strong island aromaticity. These findings significantly contribute to our understanding of the structural and electronic properties of these clusters.

16.
Anaerobe ; : 102884, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39059623

RESUMEN

OBJECTIVE: Fusobacterium necrophorum can casuse Lemierre's syndrome in humans and a range of illnesses, including foot rot and liver abscesses, in animals. The main virulence factor released by F. necrophorum is leukotoxin, which has been shown to have a strong correlation with the severity of the disease. Leukotoxin is commonly employed as the key antigen in the formulation of subunit vaccines. Therefore, identification of the B-cell epitope of F. necrophorum leukotoxin is necessary. METHODS: In this research, we utilized lymphocyte hybridoma technology to develop a monoclonal antibody (mAb), 3D7, targeting the F. necrophorum leukotoxin protein. Identification of B-cell epitopes recognized by 3D7 mAb through Western blot, ELISA and dot blot using leukotoxin-truncated recombinant proteins and peptides, and through SWISS-MODEL homology modeling and PyMOL visualization. RESULTS: The 3D7 mAb was identified as belonging to the IgG1 subclass with a κ-chain light chain. It demonstrated reactivity with the natural leukotoxin. The results showed that the 3D7 mAb recognizes a B-cell epitope of the F. necrophorum leukotoxin protein, I2168SSFGVGV2175 (EP-3D7). Sequence comparison analysis showed that EP-3D7 was highly conserved in F. necrophorum strains, but less conserved in other bacteria, indicating the specificity of EP-3D7. EP-3D7 is present on the surface of leukotoxin proteins in a ß-folded manner. CONCLUSIONS: In summary, these results establish EP-3D7 as a conserved antigenic epitope of F. necrophorum leukotoxin. It could be valuable in the development of vaccines and diagnostic reagents for F. necrophorum epitopes.

17.
BMJ Open ; 14(7): e081623, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991669

RESUMEN

INTRODUCTION: Patients with clinically significant portal hypertension (CSPH) are recommended to be treated with non-selective beta-blockers (ie, carvedilol) to prevent the first hepatic decompensation event by the renewing Baveno VII consensus. CSPH is defined by hepatic venous pressure gradient (HVPG)≥10 mm Hg; however, the HVPG measurement is not widely adopted due to its invasiveness. Liver stiffness (LS)≥25 kPa can be used as a surrogate of HVPG≥10 mm Hg to rule in CSPH with 90% of the positive predicting value in majority aetiologies of patients. A compelling argument is existing for using LS≥25 kPa to diagnose CSPH and then to initiate carvedilol in patients with compensated cirrhosis, and about 5%-6% of patients under this diagnosis criteria may not be benefited from carvedilol and are at risk of lower heart rate and mean arterial pressure. Randomised controlled trial on the use of carvedilol to prevent liver decompensation in CSPH diagnosed by LS remains to elucidate. Therefore, we aimed to investigate if compensated cirrhosis patients with LS≥25 kPa may benefit from carvedilol therapy. METHODS AND ANALYSIS: This study is a randomised, double-blind, placebo-controlled, multicentre trial. We will randomly assign 446 adult compensated cirrhosis patients with LS≥25 kPa and without any previous decompensated event and without high-risk gastro-oesophageal varices. Patients are randomly divided into two groups, with 223 subjects in group A and 223 subjects in group B. Group A is a carvedilol intervention group, while group B is a placebo group. All patients in both groups will receive aetiology therapies and are followed up at an interval of 6 months. The 3-year incidences of decompensated events of cirrhosis-related and liver-related death are the primary outcome. The secondary outcomes include development of each complication of portal hypertension individually (ascites, variceal bleeding or overt hepatic encephalopathy), development of spontaneous bacterial peritonitis and other bacterial infections, development of new varices, growth of small varices to large varices, delta changes in LS and spleen stiffness, change in hepatic dysfunction assessed by Child-Pugh and model for end-stage liver disease score, change in platelet count, development of hepatocellular carcinoma, development of portal vein thrombosis and adverse events with a 3-year follow-up. A predefined interim analysis will be performed to ensure that the calculation is reasonable. ETHICS AND DISSEMINATION: The study protocol has been approved by the ethics committees of the Sixth People's Hospital of Shenyang (2023-05-003-01) and independent ethics committee for clinical research of Zhongda Hospital, affiliated to Southeast University (2023ZDSYLL433-P01). The results from this trial will be submitted for publication in peer-reviewed journals and will be presented at international conferences. TRIAL REGISTRATION NUMBER: ChiCTR2300073864.


Asunto(s)
Carvedilol , Hipertensión Portal , Cirrosis Hepática , Carvedilol/uso terapéutico , Carvedilol/farmacología , Humanos , Hipertensión Portal/tratamiento farmacológico , Hipertensión Portal/etiología , Cirrosis Hepática/complicaciones , Método Doble Ciego , China/epidemiología , Estudios Multicéntricos como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto , Antagonistas Adrenérgicos beta/uso terapéutico , Femenino , Hígado/efectos de los fármacos , Hígado/fisiopatología , Presión Portal/efectos de los fármacos , Várices Esofágicas y Gástricas/etiología , Várices Esofágicas y Gástricas/prevención & control , Diagnóstico por Imagen de Elasticidad , Adulto , Masculino
18.
Nat Commun ; 15(1): 5557, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956415

RESUMEN

Severe traumatic bleeding may lead to extremely high mortality rates, and early intervention to stop bleeding plays as a critical role in saving lives. However, rapid hemostasis in deep non-compressible trauma using a highly water-absorbent hydrogel, combined with strong tissue adhesion and bionic procoagulant mechanism, remains a challenge. In this study, a DNA hydrogel (DNAgel) network composed of natural nucleic acids with rapid water absorption, high swelling and instant tissue adhesion is reported, like a band-aid to physically stop bleeding. The excellent swelling behavior and robust mechanical performance, meanwhile, enable the DNAgel band-aid to fill the defect cavity and exert pressure on the bleeding vessels, thereby achieving compression hemostasis for deep tissue bleeding sites. The neutrophil extracellular traps (NETs)-inspired DNAgel network also acts as an artificial DNA scaffold for erythrocytes to adhere and aggregate, and activates platelets, promoting coagulation cascade in a bionic way. The DNAgel achieves lower blood loss than commercial gelatin sponge (GS) in male rat trauma models. In vivo evaluation in a full-thickness skin incision model also demonstrates the ability of DNAgel for promoting wound healing. Overall, the DNAgel band-aid with great hemostatic capacity is a promising candidate for rapid hemostasis and wound healing.


Asunto(s)
ADN , Trampas Extracelulares , Hemostasis , Hemostáticos , Hidrogeles , Cicatrización de Heridas , Animales , Trampas Extracelulares/metabolismo , Trampas Extracelulares/efectos de los fármacos , ADN/química , Masculino , Hidrogeles/química , Hidrogeles/farmacología , Ratas , Hemostasis/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Hemostáticos/farmacología , Hemostáticos/química , Ratas Sprague-Dawley , Hemorragia , Humanos , Neutrófilos/metabolismo , Modelos Animales de Enfermedad
19.
Adv Mater ; 36(33): e2403935, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889294

RESUMEN

Tissue-specific delivery of oligonucleotide therapeutics beyond the liver remains a key challenge in nucleic acid drug development. To address this issue, exploiting exosomes as a novel carrier has emerged as a promising approach for efficient nucleic acid drug delivery. However, current exosome-based delivery systems still face multiple hurdles in their clinical applications. Herein, this work presents a strategy for constructing a hybrid exosome vehicle (HEV) through a DNA zipper-mediated membrane fusion approach for tissue-specific siRNA delivery. As a proof-of-concept, this work successfully fuses a liposome encapsulating anti-NFKBIZ siRNAs with corneal epithelium cell (CEC)-derived exosomes to form a HEV construct for the treatment of dry eye disease (DED). With homing characteristics inherited from exosomes, the siRNA-bearing HEV can target its parent cells and efficiently deliver the siRNA payloads to the cornea. Subsequently, the NFKBIZ gene silencing significantly reduces pro-inflammatory cytokine secretions from the ocular surface, reshapes its inflammatory microenvironment, and ultimately achieves an excellent therapeutic outcome in a DED mouse model. As a versatile platform, this hybrid exosome with targeting capability and designed therapeutic siRNAs may hold great potential in various disease treatments.


Asunto(s)
Exosomas , Liposomas , Fusión de Membrana , ARN Interferente Pequeño , Exosomas/metabolismo , Exosomas/química , ARN Interferente Pequeño/metabolismo , Animales , Ratones , Liposomas/química , Síndromes de Ojo Seco/terapia , Humanos , Epitelio Corneal/metabolismo , Epitelio Corneal/patología , Silenciador del Gen , Córnea/metabolismo
20.
J Colloid Interface Sci ; 674: 603-611, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38945027

RESUMEN

Rechargeable magnesium battery is regarded as the promising candidate for the next generation of high-specific-energy storage systems. Nevertheless, issues related to severe Mg-Cl dissociation at the electrolyte-electrode interface impede the insertion of Mg2+ into most materials, leading to severe polarization and low utilization of Mg-storage electrodes. In this study, a metal-organic polymer (MOP) Ni-TABQ (Ni-coordinated tetramino-benzoquinone) with superior surface catalytic activity is proposed to achieve the high-capacity Mg-MOP battery. The layered Ni-TABQ cathode, featuring a unique 2D π-d linear conjugated structure, effectively reduces the dissociation energy of MgxCly clusters at the Janus interface, thereby facilitating Mg2+ insertion. Due to the high utilization of active sites, Ni-TABQ achieves high capacities of 410 mAh/g at 200 mA g-1, attributable to a four-electron redox process involving two redox centers, benzoid carbonyls, and imines. This research highlights the importance of surface electrochemical processes in rechargeable magnesium batteries and paves the way for future development in multivalent metal-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA