RESUMEN
This study demonstrates that the co-inoculation with Lactiplantibacillus plantarum, Pichia fermentans and Staphylococcus saprophyticus accelerates catfish frame fish sauce fermentation. Over a 3-day period, significant changes occurred in physicochemical properties, microbial profiles, flavor compounds, and metabolomic spectra. Notable increases in acidity coupled with decreases in glucose underscored the robust environmental adaptability of the employed microorganisms. A reduction in total amino acids, alongside a rise in umami amino acids, suggested flavor enhancement. GC-MS analysis identified 40 key volatile compounds, with esters and aldehydes crucial for aroma development. UPLC-QTOF-MS-based untargeted analysis identified 934 metabolites, with 377 differential metabolites being vital (VIP > 1.5, P < 0.05), including amino acids, peptides, organic acids, nucleic acids, and fatty acids. Metabolites linked to amino acid metabolism, particularly phenylalanine and arginine, were associated with fermentation duration. These findings offer a theoretical basis for optimizing flavor and quality in fish sauces from fish by-products through accelerated fermentation.
RESUMEN
The effects of different thermal processing conditions on the flavor profiles of channel catfish were evaluated in terms of fatty acids, volatile flavor and taste compounds using steaming, boiling, roasting, and microwaving with different degrees. After thermal processing, 72 volatile organic compounds were detected, including 20 hydrocarbons, 5 ketones, 20 aldehydes, 7 heterocyclic compounds, 12 alcohols and others. Meanwhile, the contents of unsaturated fatty acids like oleic acid and linoleic showed a significant decline due to their heat-sensitive properties. With regard to taste compounds, thermal processing contributed to umami amino acids and free nucleotides conversion, with the initial glutamate and IMP contents of 15.87 and 164.91 mg/100 g in raw samples mainly increasing by 2.8-10.3 and 14.4-105.5 mg/100 g in processed ones. Compared to other methods, microwaving had limited effects on flavor compounds, and steaming and roasting had better performance to improve the flavor complexity of channel catfish.
Asunto(s)
Culinaria , Ácidos Grasos , Aromatizantes , Calor , Ictaluridae , Gusto , Compuestos Orgánicos Volátiles , Animales , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Ácidos Grasos/análisis , Ácidos Grasos/química , Aromatizantes/química , Aromatizantes/análisisRESUMEN
BACKGROUND: The gelation properties of surimi gel under various high temperatures (115, 118, and 121 °C) and sterilization intensities (F0 values of 3-7 min) were systematically investigated. A kinetic model detailed quality changes during heat treatment through mathematical analysis, elucidating mechanisms for gel quality degradation. RESULTS: Increased sterilization intensity significantly reduced the quality characteristics of surimi gel. Compared to the gel without sterilization treatment, when the sterilization intensity was increased to 7 min, the gel strength of the groups treated at 115 °C, 118 °C, and 121 °C decreased by 68.35%, 51.4%, and 51.71%, respectively, and the water-holding capacity decreased by 24.87%, 16.85%, and 22.5%, respectively. The hardness, chewiness, and whiteness of the gel also significantly decreased, and the changes in these indicators all conformed to a first-order kinetic model. Activation energy of 291.52 kJ mol-1 highlighted gel strength as the least heat-resistant. At equivalent sterilization intensities, 115 °C exhibited the poorest gel quality, followed by 121 °C, with 118 °C showing relatively better gel quality. Increased T22 and decreased PT22 suggested heightened water mobility and transition of immobilized water within the gel into free water. Protein degradation, weakened disulfide bonds and hydrophobic interaction, and protein conformation changes collectively led to a rough and incoherent gel network structure with large fissures, as verified by the results of scanning electron microscopy. Correlation analysis indicated potential for precise control over surimi gel quality by modulating physicochemical attributes. CONCLUSION: The outcomes may be beneficial to improve the production and quality control of ready-to-eat surimi-based products. © 2024 Society of Chemical Industry.
RESUMEN
Consumers care about the texture of fresh fish flesh, but a rapid quantitative analytical method for this has not been properly established. In this study, texture-associated biomarkers were selected by DIA-based proteomics for possible future application. Results indicated a significant decline in texture and moisture characteristics with extended storage under chilled and iced conditions, and flesh quality was categorized into three intervals. A total of 8 texture-associated biomarkers were identified in the chilled storage group, and 3 distinct ones in the iced storage group. Biomarkers were further refined based on their expression levels. Isobutyryl-CoA dehydrogenase, mitochondrial and [Phosphatase 2A protein]-leucine-carboxy methyltransferase were identified as effective texture-associated biomarkers for chilled fish, and Staphylococcal nuclease domain-containing protein 1 for iced fish. This study provided suitable proteins as indicators of fresh fish flesh texture, which could help establish a rapid and convenient texture testing method in future studies.
Asunto(s)
Biomarcadores , Carpas , Proteínas de Peces , Proteómica , Alimentos Marinos , Animales , Carpas/metabolismo , Proteómica/métodos , Biomarcadores/análisis , Proteínas de Peces/metabolismo , Alimentos Marinos/análisis , Almacenamiento de Alimentos/métodosRESUMEN
Starch is a common ingredient to improve gel property of freshwater fish surimi, but the function of natural starch to mask fishy odor compounds in surimi products has not been investigated systematacially. Therefore, this study aimed to determine which natural starch could effectively mask fishy odor compounds and clarify their interaction by GC-MS, FT-IR spectroscopy, raman spectroscopy, X-ray diffraction, scanning electron microscopy and 13C nuclear magnetic resonance. The results showed that when the concentration, crystal type, amylose content, and dispersion degree of starch was 1 %, type C, 48 % (w/v), and 200 mesh with 0.88 span, the starch had the strongest masking effect on typical fishy odor compounds, namely hexanal, 1-Octen-3-ol, (E,E)-2,4-Heptadienal and (E)-2-Octenal. It indicated that complexation and hydrogen bonding both occurred between the fishy odor compounds and starch.
Asunto(s)
Odorantes , Almidón , Odorantes/análisis , Almidón/química , Animales , Peces , Amilosa/química , Amilosa/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Aldehídos/químicaRESUMEN
BACKGROUND: Excessive sugar consumption has been linked to type 2 diabetes, obesity and other diseases. Therefore, it is indispensable to reduce sugar of food. However, the sensory characteristics of food are affected after sugar reduction (SR). Currently, SR has been reported in drinks, jams, candies, and other fruit related or sweet foods; but salty or protein related foods have not been explored, therefore there is a big gap that needs to be filled. RESULTS: Sensory scores of initial sweetness and sweetness reduced by 0.26 and 0.12 in 10% SR dried fish mince product compared with control, and there was a small difference between 25% SR (3.33) and 40% SR (3.09) samples. It also showed that 10% SR sample had a small reduction in sweetness value and free sugar content by 3.5% (0.42/11.9) and 7.8% (2.12/27.06) compared with control; while values in 25% SR sample decreased sharply but were not much different from 40% SR sample. Electronic nose results showed that SR had a small effect on odor. Texture analysis showed that texture properties of 25% SR sample were significantly different from control. CONCLUSIONS: Dried fish mince product with below 10% SR had a small difference on the sensory characteristics and there was a big change when SR was more than 20%. Dried fish mince product with 25% SR and 40% SR had no significant difference. SR had a small effect on odor, but had a great effect on texture properties, especially over 20% SR. © 2023 Society of Chemical Industry.
Asunto(s)
Diabetes Mellitus Tipo 2 , Azúcares , Animales , Azúcares/análisis , Productos Pesqueros , Manipulación de Alimentos/métodos , Frutas/químicaRESUMEN
BACKGROUND: Adding appropriate exogenous substances is an effective means to improve the quality of freshwater fish surimi. The present study investigated the effects of chicken breast on the gel properties of mixed minced meat products. RESULTS: With the increase in the proportion of chicken breast, the breaking force of mixed gels gradually increased. When the addition ratio was 30:70, the gel strength of mixed gels had the highest strength of 759.00 g cm-1 and also the highest water holding capacity of 87.36%. Compared with surimi gels (0:100), the hardness, adhesiveness and chewiness of mixed gels were significantly improved. The increase in the proportion of chicken breast increased the thermal stability of the mixed sol and improved the rheological properties of the mixed sol. When the proportion was 40:60, the area of immobile water (A22 ) in the mixed gel increased significantly, and the highest A22 was 3463.24. The hydrophobic interactions and disulfide bonds in the mixed gel were significantly increased as a result of the addition of chicken breast. The results of microstructure, electrophoresis and Raman spectroscopy indicated that the addition of chicken breast promoted the cross-linking of the proteins in mixed gels, which facilitated the transformation of the protein secondary structure from α-helical to ß-folded structure, thus forming a more uniform and orderly network structure. CONCLUSION: These results suggest that improving the gel properties of silver carp surimi by use of chicken breast has practical implications for the development of new blended products for surimi processing. © 2023 Society of Chemical Industry.
Asunto(s)
Carpas , Proteínas de Peces , Animales , Proteínas de Peces/química , Pollos , Manipulación de Alimentos/métodos , Geles/química , Agua , Productos Pesqueros/análisisRESUMEN
The effects of the L-hisdine (L-His)-assisted ultrasound on physicochemical characteristics and conformation of myofibrillar protein (MP) under reduced-salt condition were investigated using spectroscopic analysis, and the binding mechanism between L-His and MP was further elucidated through molecular docking and molecular dynamics (MD) simulations. UV second derivative spectra and intrinsic Try fluorescence spectra revealed that L-His formed a complex with MP and altered the microenvironment of MP. After L-His-assisted ultrasound treatment, MP showed smaller particle size, higher solubility, and more uniform atomic force microscopy image due to the decrease of α-helix content and the subsequent increase in zeta potential, active sulfhydryl content, and surface hydrophobicity. Molecular docking and MD simulations demonstrated the optimal docking pose (minimum binding affinity of -6.78 kcal/mol) and revealed hydrophobic interactions and hydrogen bonds as the main interaction forces between L-His and MP, with several residues (ILE-464, ILE-480, THR-483, ASN-484, GLY-466, ASP-463, PHE-246) identified as binding sites.
Asunto(s)
Histidina , Proteínas , Secuencia de Aminoácidos , Simulación del Acoplamiento Molecular , Interacciones Hidrofóbicas e HidrofílicasRESUMEN
Herein, the protective pattern of bilayer film on the texture stability of fillets was discussed in terms of endogenous enzyme activity, as well as protein oxidation and degradation. The texture properties of fillets wrapped with nanoparticles (NPs) bilayer film were greatly improved. NPs film delayed protein oxidation by inhibiting the formation of disulfide bond and carbonyl group as evidenced by the increase of α-helix ratio (43.02%) and the decrease of random coil ratio (15.87%). The protein degradation degree of fillets treated with NPs film was lower than that of control group, specifically with a more regular protein structure. The exudates accelerated the degradation of protein, while NPs film effectively absorbed exudates to delay protein degradation. Overall, the active agents in the film were released into the fillets to play an antioxidant and antibacterial roles, and the inner layer of film could absorb exudates, thus maintaining the texture characteristics of fillets.
Asunto(s)
Carpas , Conservación de Alimentos , Animales , Alimentos Marinos/análisis , Proteolisis , Exudados y TransudadosRESUMEN
The freeze-thawing (FT) stability generally correlates well with the economic value and acceptability of frozen surimi-based products. However, quality changes of emulsified surimi gels under FT conditions are still unclear. Therefore, the gel properties of samples with different phase states of lipids (lard, lard + soybean oil, and soybean oil) were investigated at FT conditions. Results showed that the soybean oil evidently improved the rheological behaviors of sols/gels compared to the lard group. The moisture content of samples with different lipids decreased by 2.40%-2.71% after 4 FT cycles. With increasing FT cycles, the water-holding capacity decreased accompanied by the increase of cooking loss. Spin-spin relaxation spectra and hydrogen proton density images proved the occurrence of water migration of gels during these processes. Better gel integrity was observed in samples consisting of soybean oil, where the proportion of pores was lower than those with lard regardless of FT treatments. Additionally, the intermolecular forces of gels also changed under FT treatments. There results suggested that the lipids with different phase states affected the migration and loss of water in emulsified surimi gels under FT cycles. PRACTICAL APPLICATION: The quality changes of heating-induced surimi gel products under frozen storage have been ignored, especially the emulsified surimi gels. This study discloses the changes of the gel properties in emulsified gel products with different phase states of lipids after FT treatments, which provides critical insights into the quality improvement of this novel emulsified surimi product during processing, storage, and transportation.
Asunto(s)
Aceite de Soja , Agua , Geles , Congelación , Culinaria , Productos Pesqueros/análisis , Proteínas de PecesRESUMEN
In the current study, bighead carp fish were used in conjunction with the flavourzyme enzyme to obtain (FPH) fish protein hydrolysates. The optimum conditions of the hydrolysis process included an enzyme/substrate ratio of 4% and a temperature of 50 °C and pH of 6.5. The hydrolysis time was studied and investigated at 1, 3, and 6 h, and the (DH) degree of hydrolysis was recorded at 16.56%, 22.23%, and 25.48%, respectively. The greatest yield value was 17.83% at DH 25.48%. By increasing the DH up to 25.48%, the crude protein and total amino acid composition of the hydrolysate were 88.19% and 86.03%, respectively. Moreover, more peptides with low molecular weight were formed during hydrolysis, which could enhance the functional properties of FPH, particularly the solubility property ranging from 85% to 97%. FTIR analysis revealed that enzymatic hydrolysis impacted the protein's secondary structure, as indicated by a remarkable wavelength of amide bands. Additionally, antioxidant activities were investigated and showed high activity of DDPH radical scavenging, and hydroxyl radical scavenging demonstrated remarkable activity. The current findings demonstrate that the functional, structural, and antioxidant characteristics of FPH might make it an excellent source of protein and suggest potential applications in the food industry.
Asunto(s)
Carpas , Cyprinidae , Animales , Antioxidantes/química , Hidrólisis , Hidrolisados de Proteína/química , Carpas/metabolismoRESUMEN
Herein, the protective pattern of chitosan coating enriched with green tea extract on texture stabilization of refrigerated grass carp fillets was explored. In general, higher shear force and lower endogenous enzyme activities were observed in coated fillets, with the max. level of cathepsins and calpain decreasing by 30.2 â¼ 39.6 % when compared to the control during storage. Meanwhile, the coating reduced protein composition changes and accumulation of protein degradation products. According to label-free proteomic analysis, the proteome closer to fresh sample was observed in coated fillets than that of the control, as supported by PCA and hierarchical cluster analysis. Meanwhile, 33 differential proteins involved in tissue structure, protein phosphorylation and protein turnover were further screened out, and most DAPs showed up-regulation in coated fillets compared to the control on day 12. Presumably, the coating modulated endogenous enzyme-induced myofibrillar protein degradation and protein phosphorylation level, thereby stabilizing the texture properties of refrigerated fillets.
Asunto(s)
Carpas , Quitosano , Animales , Proteolisis , Proteómica , Alimentos MarinosRESUMEN
BACKGROUND: Apoptosis activation is an essential research to reveal the triggering mechanism of flesh quality deterioration. This study was aimed at explaining apoptotic mechanism of postmortem fish in terms of caspases activation, cytochrome c (cyt-c) release, B-cell lymphoma 2 (Bcl-2) and Bcl2-associated X (Bax) protein levels, transcriptional levels of its molecules, and apoptosis-inducing factor (AIF) translocation at 4 °C for 5 days. RESULTS: Activation of caspase-9, caspase-8, caspase-3 and the release of mitochondrial cyt-c were observed during storage. The decreased Bcl-2 protein levels, increased Bax protein expressions and Bax/Bcl-2 ratio were major steps for inducing apoptosis. Collectively, transcriptional regulation of Fas ligand (FasL), apoptotic protease activating factor-1 (Apaf-1), inhibitors of apoptosis proteins (IAPs), myeloid cell leukemia-1 (Mcl-1), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) indicated that extrinsic apoptotic pathways (FasL/caspase-8/caspase-3) and intrinsic pathway [(JNK and p38 MAPK)/(Bcl-2, Bax and Mcl-1)/cyt-c/Apaf-1/caspase-9/caspase-3] were involved in apoptotic process. Mitochondrial AIF translocation to nuclear indicated that AIF mediated caspase-independent pathway. CONCLUSION: Therefore, transcriptional and translational alterations of multiple signaling molecules acted important roles in regulating apoptosis activation in postmortem process. © 2022 Society of Chemical Industry.
Asunto(s)
Carpas , Animales , Carpas/genética , Carpas/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Caspasa 9/metabolismo , Caspasa 8/metabolismo , Caspasa 3/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Apoptosis , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Músculos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismoRESUMEN
In this study, the effects of different pretreatments on the quality of white leg shrimp surimi were investigated based on shrimp endogenous proteases. The results showed that removing the head and rinsing significantly (P < 0.05) improved the gel strength, texture, whiteness, water distribution, and microstructure of the shrimp surimi gels. Headless shrimp surimi (HSS) had higher salt-soluble protein and lower water-soluble protein than whole shrimp surimi (WSS). The shrimp heads had high cathepsin B, L, D, and serine protease activities. Electrophoretic analysis revealed significant degradation of the myofibrillar proteins in the WSS during cold storage and thermal gelation. Moreover, the myosin heavy chains almost disappeared after thermal gelation, and new bands appeared at about 270 kDa and 100 kDa. However, rinsing reduced the endogenous proteases, water-soluble proteins, and concentrated salt-soluble proteins in the shrimp surimi; thus, the quality of the shrimp surimi gel improved after rinsing. These results suggest that the quality of the surimi gel was damaged by the endogenous proteases, and that removal of the shrimp heads and rinsing significantly (P < 0.05) improved the quality of the shrimp surimi gel. The gel properties of WSS were similar after the second rinse to those of unrinsed HSS. The choice of headless shrimp or whole shrimp as the raw material for production needs to be comprehensively considered according to the planned cost and the quality required for the shrimp surimi product. The recommended number of rinses is 1-2.
Asunto(s)
Productos Pesqueros , Penaeidae , Animales , Endopeptidasas , Productos Pesqueros/análisis , Proteínas de Peces/química , Geles/química , Penaeidae/metabolismo , Péptido Hidrolasas , AguaRESUMEN
The risk of Procambarus clarkii eating safety attracts consumers' big concern, but it has not been addressed properly. Therefore, this study was aimed to investigate eating safety and quality of live and dead Procambarus clarkii at different stages by total volatile basic nitrogen (TVB-N), biogenic amines (BAs), total aerobic plate counts (TPC) and microbiota. The results showed that in live Procambarus clarkii, TVB-N and TPC values were below the limit despite vitality, while cadaverine in gills, intestines, and glands (GIG) exceeded in articulo-mortis Procambarus clarkii. For the dead, it showed that Procambarus clarkii posed a high risk in eating safety within one to two days after death; and BAs of high risk were putrescine and cadaverine. The dominant microorganisms threatening eating safety and quality were potentially pathogenic bacteria of Citrobacter and Acinetobacter from the environment; and spoilage bacteria of Shewanella from viscera.
Asunto(s)
Astacoidea , Alimentos Marinos , Animales , Aminas Biogénicas , Cadaverina , Agua Dulce , Nitrógeno , Alimentos Marinos/análisisRESUMEN
In this study, key aroma compounds of low-salt fermented sour fish were characterized using headspace solid-phase micro extraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS), odor activity values (OAV) and aroma recombination and omission experiments. Eighty-eight volatile compounds, including esters, aldehydes, alcohols, acids, furans and pyrazines, were identified by HS-SPME-GC-MS. Eighteen aroma-active compounds were quantified by employing calculation of OAV greater than 1. A recombination aroma model prepared using aroma-active compounds based on the odorless fish matrix sensorially matched the aroma of fermented sour fish with a score of 4.5 out of 5. The omission experiment showed that 7 out of 18 compounds had a significant contribution to the overall aroma (P < 0.05). The key aroma compounds of fermented sour fish were concluded to be ethyl acetate (OAV = 189), ethyl hexanoate (OAV = 66), isoamyl acetate (OAV = 424), ethyl butyrate (OAV = 26), hexanal (OAV = 49), 1-hexadecanal (OAV = 14) and 2-pentylfuran (OAV = 13).
Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Odorantes/análisis , Olfatometría/métodos , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/análisisRESUMEN
This study aimed to compare the short-term clinical efficacy between prior and traditional approach of Henle trunk in laparoscopic right hemicolectomy (LRH) for right colon cancer. A total of 161 patients underwent LRH for right colon cancer between June 2018 and December 2020 by the same group of physicians. The prior approach of Henle trunk (priority group) was used in 82 patients and traditional approach in 79 (traditional group). The demographics and clinicopathological characteristics were recorded and retrospectively analyzed. As compared to the traditional group, the mean blood loss reduced significantly [73.84 ± 17.31 mL vs. 83.42 ± 30.16 mL; P = 0.001], the operation time was markedly shorter [151.35 ± 6.75 min vs. 159.13 ± 18.85 min; P = 0.014], and the intraoperative vascular injury rate was significantly lower [6.1% (5/82). vs. 17.7% (14/79); P = 0.022]. There were no significant differences in the postoperative complications, first exhaust time, first defecation time, drainage time, postoperative hospital stay, quality evaluation of surgical specimens and pathological findings between two groups. Our study shows that the priority management of Henle trunk in the LRH for right colon cancer is a safe and feasible procedure with less blood loss, shorter operation time and lower intraoperative vascular injury rate.
RESUMEN
The production of fish protein hydrolysates from bighead carp (Hypophthalmichthys nobilis) using ficin enzymes was achieved in optimal conditions of 3% enzyme/substrate ratio, 40 °C temperature, and pH 6. Three different hydrolysis times, 1, 3, and 6 h, were investigated, and their degree of hydrolysis (DH) values were 13.36%, 17.09%, and 20.15%, respectively. The hydrolysate yield values increased with DH increase, and the highest yield was obtained at DH 20.15%. The crude protein content increased from 80.58% to 85.27%, and amino acid compositions increased from 78.33% to 83.07%. The peptides formed during hydrolysis indicated low molecular weight that might improve functional characteristics of fish protein hydrolysates, including protein solubility, which ranged from 84.88% to 95.48% for all hydrolysates. The thermal degradation of hydrolysates occurred from 160 to 168 °C with intensive endothermic peaks. Results revealed that oil holding capacity was higher at DH 13.36%; water holding capacity was higher when DH increased. Hence, fish protein hydrolysates (FPH) from bighead carp have improved functional properties, and can be utilized as supplements and excellent protein sources in various uses in food applications.
RESUMEN
BACKGROUND: Textural deterioration is a serious problem in chilled fish flesh. Cysteine proteinases are proposed to participate in disintegration of collagen fibers during this process, while its mechanism remains elusive. In the present study, a cysteine proteinase was purified from grass carp muscle and identified by mass spectrometry, and its effect on structural changes of collagen fibers was investigated. RESULTS: During storage at 4 °C, cysteine proteinase activity in fillets increased to 1.53-fold at day 5 and maintained a high level later, and this variable was related to a decline in shear force and an increase in drip loss. A 29 kDa cysteine proteinase was purified through ammonium sulfate precipitation and column chromatography, and identified as cathepsin L. Cathepsin L caused collagen fibers to partly disintegrate into fibril bundles and individual fibrils at 48 h, while the triple helical structure of collagen molecules remained stable. Release of soluble proteins and glycosaminoglycans from cathepsin L-treated collagen fibers was time dependent, coinciding with a release of 4.12 ± 0.13% and 8.57 ± 0.03% at 48 h respectively. However, 0.85 ± 0.02% of hydroxyproline was freed from cathepsin L-treated collagen fibers at 48 h. Furthermore, scanning electron microscopy revealed that the inhibitory effect of cathepsin L could retard the destruction of intramuscular connective tissues (IMCTs). CONCLUSION: These results indicated that cathepsin L might be involved in collagen fiber breakdown by degrading collagen-associated proteoglycans during textural deterioration of grass carp. © 2022 Society of Chemical Industry.
Asunto(s)
Carpas , Animales , Carpas/metabolismo , Catepsina L , Colágeno/metabolismo , Músculos/metabolismoRESUMEN
This study aimed to reveal the effects of vacuum-impregnated carboxymethyl chitosan (CMCS) coating with pomegranate peel extract (PPE) on quality retention of fish flesh during refrigeration. Herein, CMCS-PPE coating was effective in attenuating quality loss of grass carp fillets. Compared to Control, the levels of drip loss, total volatile base nitrogen, and K value in coated samples were sharply decreased (p < 0.05) by 24.5%, 35.3% and 25.2% on day 9, respectively. Meanwhile, the coating also helped inhibit oxidation, bioamine accumulation, and texture softening in fillets. Moreover, the microbial enumeration was reduced by >1.4 lg cfu/g as compared to Control on day 6 afterward, and high throughput sequencing analysis further showed the active coating contributed to the notable growth suppression of spoilage bacteria like Shewanella. Additionally, the positive effect of the coating scheme was also verified in longsnout catfish and snakehead, further confirming its good applicability for fish flesh preservation.