Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Acta Biomater ; 180: 244-261, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38615812

RESUMEN

Low back pain is a leading cause of disability worldwide, often attributed to intervertebral disc (IVD) degeneration with loss of the functional nucleus pulposus (NP). Regenerative strategies utilizing biomaterials and stem cells are promising for NP repair. Human NP tissue is highly viscoelastic, relaxing stress rapidly under deformation. However, the impact of tissue-specific viscoelasticity on the activities of adipose-derived stem cells (ASC) remains largely unexplored. Here, we investigated the role of matrix viscoelasticity in regulating ASC differentiation for IVD regeneration. Viscoelastic alginate hydrogels with stress relaxation time scales ranging from 100 s to 1000s were developed and used to culture human ASCs for 21 days. Our results demonstrated that the fast-relaxing hydrogel significantly enhanced ASCs long-term cell survival and NP-like extracellular matrix secretion of aggrecan and type-II collagen. Moreover, gene expression analysis revealed a substantial upregulation of the mechanosensitive ion channel marker TRPV4 and NP-specific markers such as SOX9, HIF-1α, KRT18, CDH2 and CD24 in ASCs cultured within the fast-relaxing hydrogel, compared to slower-relaxing hydrogels. These findings highlight the critical role of matrix viscoelasticity in regulating ASC behavior and suggest that viscoelasticity is a key parameter for novel biomaterials design to improve the efficacy of stem cell therapy for IVD regeneration. STATEMENT OF SIGNIFICANCE: Systematically characterized the influence of tissue-mimetic viscoelasticity on ASC. NP-mimetic hydrogels with tunable viscoelasticity and tissue-matched stiffness. Long-term survival and metabolic activity of ASCs are substantially improved in the fast-relaxing hydrogel. The fast-relaxing hydrogel allows higher rate of cell protrusions formation and matrix remodeling. ASC differentiation towards an NP-like cell phenotype is promoted in the fast-relaxing hydrogel, with more CD24 positive expression indicating NP committed cell fate. The expression of TRPV4, a molecular sensor of matrix viscoelasticity, is significantly enhanced in the fast-relaxing hydrogel, indicating ASC sensing matrix viscoelasticity during cell development. The NP-specific ECM secretion of ASC is considerably influenced by matrix viscoelasticity, where the deposition of aggrecan and type-II collagen are significantly enhanced in the fast-relaxing hydrogel.


Asunto(s)
Tejido Adiposo , Hidrogeles , Células Madre Mesenquimatosas , Núcleo Pulposo , Regeneración , Hidrogeles/química , Hidrogeles/farmacología , Humanos , Núcleo Pulposo/citología , Núcleo Pulposo/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Regeneración/efectos de los fármacos , Tejido Adiposo/citología , Viscosidad , Elasticidad , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Alginatos/química , Alginatos/farmacología
2.
Proc Natl Acad Sci U S A ; 120(39): e2307816120, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37725650

RESUMEN

Hydrogel adhesion that can be easily modulated in magnitude, space, and time is desirable in many emerging applications ranging from tissue engineering and soft robotics to wearable devices. In synthetic materials, these complex adhesion behaviors are often achieved individually with mechanisms and apparatus that are difficult to integrate. Here, we report a universal strategy to embody multifaceted adhesion programmability in synthetic hydrogels. By designing the surface network topology of a hydrogel, supramolecular linkages that result in contrasting adhesion behaviors are formed on the hydrogel interface. The incorporation of different topological linkages leads to dynamically tunable adhesion with high-resolution spatial programmability without alteration of bulk mechanics and chemistry. Further, the association of linkages enables stable and tunable adhesion kinetics that can be tailored to suit different applications. We rationalize the physics of polymer chain slippage, rupture, and diffusion at play in the emergence of the programmable behaviors. With the understanding, we design and fabricate various soft devices such as smart wound patches, fluidic channels, drug-eluting devices, and reconfigurable soft robotics. Our study presents a simple and robust platform in which adhesion controllability in multiple aspects can be easily integrated into a single design of a hydrogel network.

3.
Biomacromolecules ; 24(9): 4180-4189, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37606546

RESUMEN

Chitin nanocrystals (ChNCs) are unique to all other bio-derived nanomaterials in one aspect: the inherent presence of a nitrogen moiety. By tuning the chemical functionality of this nanomaterial, and thus its charge and hydrogen bonding capacity, one can heavily impact its macroscopic properties such as its rheological and self-assembly characteristics. In this study, two types of ChNCs are made using acid hydrolysis (AH-ChNCs) and oxidative (OX-ChNCs) pathways, unto which deacetylation using a solvent-free procedure is utilized to create chitosan nanocrystals (ChsNCs) of varying degree of deacetylation (DDA). These nanocrystals were then studied for their rheological behavior and liquid crystalline ordering. It was found that with both deacetylation and carboxylation of ChNCs, viscosity continually increased with increasing concentrations from 2 to 8 wt %, contrary to AH-ChNC dispersions in the same range. Interestingly, increasing the amine content of ChNCs was not proportional to the storage modulus, where a peak saturation of amines provided the most stiffness. Conversely, while the introduction of carboxylation increased the elastic modulus of OX-ChNCs by an order of magnitude from that of AH-ChNCs, it was decreased by increasing DDA. Deacetylation and carboxylation both inhibited the formation of a chiral nematic phase. Finally, these series of nanocrystals were incorporated into biodegradable pectin-alginate films as a physical reinforcement, which showed increased tensile strength and Young's modulus values for the films incorporated with ChsNCs. Overall, this study is the first to investigate how surface functionalization of chitin-derived nanocrystals can affect their rheological and liquid crystalline properties and how it augments pectin/alginate films as a physical reinforcement nanofiller.


Asunto(s)
Quitosano , Nanopartículas , Quitina , Biopolímeros , Pectinas , Alginatos , Aminas
4.
Nat Commun ; 13(1): 5035, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36028516

RESUMEN

Non-compressible hemorrhage is an unmet clinical challenge that accounts for high mortality in trauma. Rapid pressurized blood flows under hemorrhage impair the function and integrity of hemostatic agents and the adhesion of bioadhesive sealants. Here, we report the design and performance of bioinspired microstructured bioadhesives, formed with a macroporous tough xerogel infused with functional liquids. The xerogel can rapidly absorb interfacial fluids such as whole blood and promote blood clotting, while the infused liquids facilitate interfacial bonding, sealing, and antibacterial function. Their synergy enables the bioadhesives to form tough adhesion on ex vivo human and porcine tissues and diverse engineered surfaces without the need for compression, as well as on-demand instant removal and storage stability. We demonstrate a significantly improved hemostatic efficacy and biocompatibility in rats and pigs compared to non-structured counterparts and commercial products. This work opens new avenues for the development of bioadhesives and hemostatic sealants.


Asunto(s)
Hemostáticos , Adhesivos Tisulares , Animales , Materiales Biocompatibles , Hemorragia , Hemostasis , Humanos , Ratas , Porcinos
5.
Science ; 377(6607): 751-755, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35951702

RESUMEN

Tough bioadhesion has important implications in engineering and medicine but remains challenging to form and control. We report an ultrasound (US)-mediated strategy to achieve tough bioadhesion with controllability and fatigue resistance. Without chemical reaction, the US can amplify the adhesion energy and interfacial fatigue threshold between hydrogels and porcine skin by up to 100 and 10 times. Combined experiments and theoretical modeling suggest that the key mechanism is US-induced cavitation, which propels and immobilizes anchoring primers into tissues with mitigated barrier effects. Our strategy achieves spatial patterning of tough bioadhesion, on-demand detachment, and transdermal drug delivery. This work expands the material repertoire for tough bioadhesion and enables bioadhesive technologies with high-level controllability.


Asunto(s)
Adhesivos , Hidrogeles , Ondas Ultrasónicas , Animales , Piel , Porcinos
6.
J Mater Chem B ; 10(37): 7239-7259, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35674315

RESUMEN

Non-compressible hemorrhage is an unmet clinical challenge, which occurs in inaccessible sites in the body where compression cannot be applied to stop bleeding. Current treatments reliant on blood transfusion are limited in efficacy and complicated by blood supply (short shelf-life and high cost), immunogenicity and contamination risks. Alternative strategies based on hemostatic biomaterials exert biochemical and/or mechanical cues to halt hemorrhage. The biochemical hemostats are built upon native coagulation cascades, while the mechanical hemostats use mechanical efforts to stop bleeding. This review covers the design principles and applications of such hemostatic biomaterials, following an overview of coagulation mechanisms and clot mechanics. We present how biochemical strategies modulate coagulation and fibrinolysis, and also mechanical mechanisms such as absorption, agglutination, and adhesion to achieve hemostasis. We also outline the challenges and immediate opportunities to provide comprehensive guidelines for the rational design of hemostatic biomaterials.


Asunto(s)
Hemostáticos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Coagulación Sanguínea , Hemorragia , Hemostasis , Hemostáticos/farmacología , Hemostáticos/uso terapéutico , Humanos
7.
ACS Appl Mater Interfaces ; 13(31): 37849-37861, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34313124

RESUMEN

Ionotronic hydrogels find wide applications in flexible electronics, wearable/implantable devices, soft robotics, and human-machine interfaces. Their performance and practical translation have been bottlenecked by poor adhesiveness, limited mechanical properties, and the lack of biological functions. The remedies are often associated with complex formulations and sophisticated processing. Here, we report a rational design and facile synthesis of ionotronic tough adhesives (i-TAs), which have excellent mechanical, physical, electrical, and biological properties and promise high scalability and translational potential. They consist of an interpenetrating network with high-density amine groups and highly mobile chains, which enable intrinsic adhesiveness, self-healing, ionic stability, cytocompatibility, and antimicrobial functions. The i-TAs in both pristine and swollen states possess high toughness, stretchability, and strong adhesion to diverse substrates such as tissues and elastomers. The superior mechanical performance is achieved simultaneously with high ionic conductivity and stability in electrolyte solutions. We further demonstrate the use of i-TAs as wearable devices, strain sensors, and sensory sealants. This work is expected to open avenues for new ionotronics with novel functions and stimulate the development and translation of ionotronics.


Asunto(s)
Adhesivos/química , Hidrogeles/química , Resinas Acrílicas/química , Adhesividad , Quitosano/química , Conductividad Eléctrica , Humanos , Ensayo de Materiales , Monitoreo Fisiológico/instrumentación , Movimiento , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Resistencia a la Tracción , Dispositivos Electrónicos Vestibles
8.
ACS Appl Mater Interfaces ; 11(13): 12357-12366, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30859807

RESUMEN

Efficient intracellular delivery of exogenous macromolecules is a key operation in biological research and for clinical applications. Moreover, under particular in vitro or ex vivo conditions, harvesting the engineered cells that maintain good viability is also important. However, none of the methods currently available is truly satisfactory in all respects. Herein, a "two-in-one" platform based on a polydopamine/poly( N-isopropylacrylamide) (PDA/PNIPAAm) hybrid film is developed, showing high efficiency in both cargo delivery and cell harvest without compromising cell viability. Due to the strong photothermal effect of PDA in response to near-infrared irradiation, this film can deliver diverse molecules to a number of cell types (including three hard-to-transfect cells) with an efficiency of ∼99% via membrane-disruption mechanism. Moreover, due to the thermoresponsive properties of PNIPAAm, the cells are harvested from the film without compromising viability by simply decreasing the temperature. A proof-of-concept experiment demonstrates that, using this platform, "recalcitrant" endothelial cells can be transfected by the functional ZNF580 gene and the harvested transfected cells can be recultured with high retention of viability and improved migration. In general, this "two-in-one" platform provides a reliable, universally applicable approach for both intracellular delivery and cell harvest in a highly efficient and nondestructive way, with great potential for use in a wide range of biomedical applications.


Asunto(s)
Resinas Acrílicas , Sistemas de Liberación de Medicamentos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Hipertermia Inducida , Indoles , Fototerapia , Polímeros , Transfección , Resinas Acrílicas/química , Resinas Acrílicas/farmacocinética , Resinas Acrílicas/farmacología , Células HeLa , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Indoles/química , Indoles/farmacocinética , Indoles/farmacología , Polímeros/química , Polímeros/farmacocinética , Polímeros/farmacología , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
9.
ACS Macro Lett ; 8(4): 337-344, 2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35651134

RESUMEN

The "self-homing" of cancer cells to primary or metastatic tumor sites indicates that they could serve as vehicles for self-targeted cancer therapy; this suggests a promising method for treating end-stage cancer. Inspired by this, we propose that engineering cancer cells to carry efficient "coup" molecules for in situ activation of immune cells in or near tumor sites to attack tumors is a promising strategy for cancer therapy. Therefore, herein we explored the potential of engineered tumor cells to enhance their anticancer activity by stimulating immune cells. We armed tumor cell surfaces with specific glycopolymer-ligands that bind to lectins on macrophages or dendritic cells by combining HaloTag protein (HTP) fusion technique with reversible addition-fragmentation chain transfer (RAFT) polymerization. We demonstrated that two synthetic well-defined glycopolymers containing, respectively, N-acetylglucosamine and N-acetylmannosamine units, were introduced and stably presented on the cell surfaces via the stable covalent binding of chloroalkane-terminated polymers with membrane-bound HTP. Furthermore, it was shown that the glycopolymer-engineered HeLa cells with HTP anchors increased expression of the typical marker for M1-type macrophages (CD86) and upregulated secretion of pro-inflammatory cytokines (IL-12p70, TNF-α, and iNOS), thereby accelerating HeLa cell lysis. The maturation of dendritic cells was also promoted. This study demonstrates the strong potential of glycopolymer-engineered tumor cells in cancer immunotherapy.

10.
J Mater Chem B ; 6(23): 3946-3955, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32254323

RESUMEN

Conventional antibacterial surfaces are becoming less effective due to the emergence of multidrug resistant bacteria; in addition, difficulties related to the accumulation of killed bacteria are generally encountered. To circumvent these problems, in the present work, an antibiotic-free and regenerable antibacterial hybrid film with both photothermal bactericidal activity and bacteria-releasing properties was fabricated on diverse substrates by sequential deposition of a gold nanoparticle layer (GNPL) and a phase-transitioned lysozyme film (PTLF). Due to the photothermal effect of the GNPL, the hybrid film was able to kill >99% of attached bacteria under near-infrared laser irradiation in 5 min. Moreover, the topmost PTLF layer could be degraded and detached from the surface by immersion in vitamin C solution for a short period, leading to removal of the killed bacteria and surface regeneration. The surface could be used and regenerated in this way through multiple cycles for long-term effective performance. The surface fabrication process is simple and environmentally friendly, and can be applied to diverse materials. These hybrid films thus offer a viable alternative for the killing and removal of adherent bacteria (particularly multidrug resistant bacteria) on the surfaces of medical devices for in vitro applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA