Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
World J Diabetes ; 15(9): 1942-1961, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39280184

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus. Its blindness rate is high; therefore, finding a reasonable and safe treatment plan to prevent and control DR is crucial. Currently, there are abundant and diverse research results on the treatment of DR by Chinese medicine Traditional Chinese medicine compounds are potentially advantageous for DR prevention and treatment because of its safe and effective therapeutic effects. AIM: To investigate the effects of Buqing granule (BQKL) on DR and its mechanism from a systemic perspective and at the molecular level by combining network pharmacology and in vivo experiments. METHODS: This study collected information on the drug targets of BQKL and the therapeutic targets of DR for intersecting target gene analysis and protein-protein interactions (PPI), identified various biological pathways related to DR treatment by BQKL through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, and preliminarily validated the screened core targets by molecular docking. Furthermore, we constructed a diabetic rat model with a high-fat and high-sugar diet and intraperitoneal streptozotocin injection, and administered the appropriate drugs for 12 weeks after the model was successfully induced. Body mass and fasting blood glucose and lipid levels were measured, and pathological changes in retinal tissue were detected by hematoxylin and eosin staining. ELISA was used to detect the oxidative stress index expression in serum and retinal tissue, and immunohistochemistry, real-time quantitative reverse transcription PCR, and western blotting were used to verify the changes in the expression of core targets. RESULTS: Six potential therapeutic targets of BQKL for DR treatment, including Caspase-3, c-Jun, TP53, AKT1, MAPK1, and MAPK3, were screened using PPI. Enrichment analysis indicated that the MAPK signaling pathway might be the core target pathway of BQKL in DR treatment. Molecular docking prediction indicated that BQKL stably bound to these core targets. In vivo experiments have shown that compared with those in the Control group, rats in the Model group had statistically significant (P < 0.05) severe retinal histopathological damage; elevated blood glucose, lipid, and malondialdehyde (MDA) levels; increased Caspase-3, c-Jun, and TP53 protein expression; and reduced superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels, ganglion cell number, AKT1, MAPK1, and MAPK3 protein expression. Compared with the Model group, BQKL group had reduced histopathological retinal damage and the expression of blood glucose and lipids, MDA level, Caspase-3, c-Jun and TP53 proteins were reduced, while the expression of SOD, GSH-Px level, the number of ganglion cells, AKT1, MAPK1, and MAPK3 proteins were elevated. These differences were statistically significant (P < 0.05). CONCLUSION: BQKL can delay DR onset and progression by attenuating oxidative stress and inflammatory responses and regulating Caspase-3, c-Jun, TP53, AKT1, MAPK1, and MAPK3 proteins in the MAPK signaling pathway mediates these alterations.

2.
Biomed Environ Sci ; 37(7): 774-784, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39198241

RESUMEN

Melanocytes derived from neural crest cells harbor the BRAF V600E mutation, which is the predominant driver of nevus formation in humans. This mutation leads to malignant cell proliferation and subsequent cell cycle arrest, culminating in oncogene-induced senescence and nevus development. Nevertheless, emerging evidence has highlighted the heterogeneity of cellular senescence markers in BRAF V600E-induced senescent melanocytes. Moreover, the capacity of melanocytes within nevi to regain their proliferative ability raises questions about the molecular mechanisms by which BRAF V600E, via the mitogen-activated protein kinase signaling pathway, triggers nevus formation. This study provides an overview and discussion of the molecular mechanisms underpinning BRAF V600E-induced melanocyte nevus formation and the relevant animal models employed for their elucidation. It also highlights the significance of elucidating dynamic changes in cytoplasmic and nuclear substrates that interact with phosphorylated extracellular signal-regulated protein kinases 1 and 2 and underscores the value of using targeted BRAF V600E animal models created through gene editing technologies.


Asunto(s)
Nevo , Proteínas Proto-Oncogénicas B-raf , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Humanos , Animales , Nevo/genética , Nevo/metabolismo , Melanocitos/metabolismo , Mutación , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo
3.
Antioxidants (Basel) ; 13(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39061935

RESUMEN

Assisted reproduction technology (ART) procedures are often impacted by post-ovulatory aging (POA), which can lead to reduced fertilization rates and impaired embryo development. This study used RNA sequencing analysis and experimental validation to study the similarities and differences between in vivo- and vitro-matured porcine oocytes before and after POA. Differentially expressed genes (DEGs) between fresh in vivo-matured oocyte (F_vivo) and aged in vivo-matured oocyte (A_vivo) and DEGs between fresh in vitro-matured oocyte (F_vitro) and aged in vitro-matured oocyte (A_vitro) were intersected to explore the co-effects of POA. It was found that "organelles", especially "mitochondria", were significantly enriched Gene Ontology (GO) terms. The expression of genes related to the "electron transport chain" and "cell redox homeostasis" pathways related to mitochondrial function significantly showed low expression patterns in both A_vivo and A_vitro groups. Weighted correlation network analysis was carried out to explore gene expression modules specific to A_vivo. Trait-module association analysis showed that the red modules were most associated with in vivo aging. There are 959 genes in the red module, mainly enriched in "RNA binding", "mRNA metabolic process", etc., as well as in GO terms, and "spliceosome" and "nucleotide excision repair" pathways. DNAJC7, IK, and DDX18 were at the hub of the gene regulatory network. Subsequently, the functions of DDX18 and DNAJC7 were verified by knocking down their expression at the germinal vesicle (GV) and Metaphase II (MII) stages, respectively. Knockdown at the GV stage caused cell cycle disorders and increase the rate of abnormal spindle. Knockdown at the MII stage resulted in the inefficiency of the antioxidant melatonin, increasing the level of intracellular oxidative stress, and in mitochondrial dysfunction. In summary, POA affects the organelle function of oocytes. A_vivo oocytes have some unique gene expression patterns. These genes may be potential anti-aging targets. This study provides a better understanding of the detailed mechanism of POA and potential strategies for improving the success rates of assisted reproductive technologies in pigs and other mammalian species.

4.
Nat Commun ; 15(1): 5502, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951519

RESUMEN

Resistance to chemotherapy has been a major hurdle that limits therapeutic benefits for many types of cancer. Here we systematically identify genetic drivers underlying chemoresistance by performing 30 genome-scale CRISPR knockout screens for seven chemotherapeutic agents in multiple cancer cells. Chemoresistance genes vary between conditions primarily due to distinct genetic background and mechanism of action of drugs, manifesting heterogeneous and multiplexed routes towards chemoresistance. By focusing on oxaliplatin and irinotecan resistance in colorectal cancer, we unravel that evolutionarily distinct chemoresistance can share consensus vulnerabilities identified by 26 second-round CRISPR screens with druggable gene library. We further pinpoint PLK4 as a therapeutic target to overcome oxaliplatin resistance in various models via genetic ablation or pharmacological inhibition, highlighting a single-agent strategy to antagonize evolutionarily distinct chemoresistance. Our study not only provides resources and insights into the molecular basis of chemoresistance, but also proposes potential biomarkers and therapeutic strategies against such resistance.


Asunto(s)
Antineoplásicos , Sistemas CRISPR-Cas , Resistencia a Antineoplásicos , Irinotecán , Oxaliplatino , Proteínas Serina-Treonina Quinasas , Resistencia a Antineoplásicos/genética , Humanos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Oxaliplatino/farmacología , Irinotecán/farmacología , Sistemas CRISPR-Cas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Animales , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
5.
Adv Mater ; 36(35): e2404232, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38934440

RESUMEN

Pairing the positive and negative electrodes with their individual dynamic characteristics at a realistic cell level is essential to the practical optimal design of electrochemical energy storage devices. However, the complex relationship between the performance data measured for individual electrodes and the two-electrode cells used in practice often makes an optimal pairing experimentally challenging. Taking advantage of the developed tunable graphene-based electrodes with controllable structure, experiments with machine learning are successfully united to generate a large pool of capacitance data for graphene-based electrode materials with varied slit pore sizes, thicknesses, and charging rates and numerically pair them into different combinations for two-electrode cells. The results show that the optimal pairing parameters of positive and negative electrodes vary considerably with the operation rate of the cells and are even influenced by the thickness of inactive components. The best-performing individual electrode does not necessarily result in optimal cell-level performance. The machine learning-assisted pairing approach presents much higher efficiency compared with the traditional trial-and-error approach for the optimal design of supercapacitors. The new engineering science insights observed in this work enable the adoption of artificial intelligence techniques to efficiently translate well-developed high-performance individual electrode materials into real energy storage devices.

6.
ACS Appl Mater Interfaces ; 16(24): 31480-31488, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38838344

RESUMEN

The alkaline hydrogen evolution reaction (HER) is intricately linked to the water dissociation kinetics. The quest for new strategies to accelerate this step is a pivotal aspect of enhancing the HER performance. Herein, we designed and synthesized a heterogeneous nickel phosphide/cobalt phosphide nanowire array grown on nickel foam (Ni2P/CoP/NF) to form a p-n junction structure. The built-in electric field (BEF) in the p-n junction optimizes the binding ability of hydrogen and hydroxyl intermediates, efficiently promoting water dissociation for the alkaline HER. Consequently, Ni2P/CoP/NF exhibits a lower overpotential of 58 and 118 mV at 30 and 100 mA cm-2, respectively, and high stability over 40 h at 300 mA cm-2 for the HER in 1 M KOH. Computational calculations combined with experiment results testify that the BEF presence in the p-n junction of Ni2P/CoP/NF effectively promotes water dissociation, regulates intermediate adsorption/desorption, and boosts electron transport. This study presents a rational design approach for high-performance heterogeneous electrocatalysts.

7.
Microsc Microanal ; 29(6): 2174-2183, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38066680

RESUMEN

N6-methyladenosine (m6A), the most prevalent modification in eukaryotic messenger RNA (mRNA), plays a key role in various developmental processes in mammals. Three proteins that affect RNA m6A modification have been identified: methyltransferases, demethylases, and m6A-binding proteins, known as "writer," "eraser," and "reader" proteins, respectively. However, changes in the m6A modification when early porcine embryos are exposed to stress remain unclear. In this study, we exposed porcine oocytes to a high temperature (HT, 41°C) for 10 h, after which the mature oocytes were parthenogenetically activated and cultured for 7 days to the blastocyst stage. HT significantly decreased the rates of the first polar body extrusion and blastocyst formation. Further detection of m6A modification found that HT can lead to increased expression levels of "reader," YTHDF2, and "writer," METTL3, and decreased expression levels of "eraser," FTO, resulting in an increased level of m6A modification in the embryos. Additionally, heat shock protein 70 (HSP70) is upregulated under HT conditions. Our study demonstrated that HT exposure alters m6A modification levels, which further affects early porcine embryonic development.


Asunto(s)
Desarrollo Embrionario , Epigénesis Genética , Animales , Porcinos , Temperatura , Mamíferos
8.
Front Cell Dev Biol ; 11: 1238546, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965572

RESUMEN

Y-box binding protein 1 (YBX1) plays important roles in RNA stabilization, translation, transcriptional regulation, and mitophagy. However, its effects on porcine preimplantation embryos remain unclear. In this study, we knocked down YBX1 in the one-cell (1C) stage embryo via small interfering RNA microinjection to determine its function in porcine embryo development. The mRNA level of YBX1 was found to be highly expressed at the four-cell (4C) stage in porcine embryos compared with one-cell (1C) and two-cell (2C) stages. The number of blastocysts was reduced following YBX1 knockdown. Notably, YBX1 knockdown decreased the phosphatase and tensin homolog-induced kinase 1 (PINK1) and parkin RBR E3 ubiquitin protein ligase (PRKN) mRNA levels. YBX1 knockdown also decreased PINK1, active mitochondria, and sirtuin 1 levels, indicating reduced mitophagy and mitochondrial biogenesis. Furthermore, YBX1 knockdown increased the levels of glucose-regulated protein 78 (GRP78) and calnexin, leading to endoplasmic reticulum (ER) stress. Additionally, YBX1 knockdown increased autophagy and apoptosis. In conclusion, knockdown of YBX1 decreases mitochondrial function, while increasing ER stress and autophagy during embryonic development.

9.
Nucleic Acids Res ; 51(18): 9552-9566, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37697433

RESUMEN

Intrinsic DNA properties including bending play a crucial role in diverse biological systems. A recent advance in a high-throughput technology called loop-seq makes it possible to determine the bendability of hundred thousand 50-bp DNA duplexes in one experiment. However, it's still challenging to assess base-resolution sequence bendability in large genomes such as human, which requires thousands of such experiments. Here, we introduce 'BendNet'-a deep neural network to predict the intrinsic DNA bending at base-resolution by using loop-seq results in yeast as training data. BendNet can predict the DNA bendability of any given sequence from different species with high accuracy. To explore the utility of BendNet, we applied it to the human genome and observed DNA bendability is associated with chromatin features and disease risk regions involving transcription/enhancer regulation, DNA replication, transcription factor binding and extrachromosomal circular DNA generation. These findings expand our understanding on DNA mechanics and its association with transcription regulation in mammals. Lastly, we built a comprehensive resource of genomic DNA bendability profiles for 307 species by applying BendNet, and provided an online tool to assess the bendability of user-specified DNA sequences (http://www.dnabendnet.com/).

10.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569497

RESUMEN

Zinc finger and SCAN domain-containing 4 (ZSCAN4), a DNA-binding protein, maintains telomere length and plays a key role in critical aspects of mouse embryonic stem cells, including maintaining genomic stability and defying cellular senescence. However, the effect of ZSCAN4 in porcine parthenogenetic embryos remains unclear. To investigate the function of ZSCAN4 and the underlying mechanism in porcine embryo development, ZSCAN4 was knocked down via dsRNA injection in the one-cell stage. ZSCAN4 was highly expressed in the four- and five- to eight-cell stages in porcine embryos. The percentage of four-cell stage embryos, five- to eight-cell stage embryos, and blastocysts was lower in the ZSCAN4 knockdown group than in the control group. Notably, depletion of ZSCAN4 induced the protein expression of DNMT1 and 5-Methylcytosine (5mC, a methylated form of the DNA base cytosine) in the four-cell stage. The H3K27ac level and ZGA genes expression decreased following ZSCAN4 knockdown. Furthermore, ZSCAN4 knockdown led to DNA damage and shortened telomere compared with the control. Additionally, DNMT1-dsRNA was injected to reduce DNA hypermethylation in ZSCAN4 knockdown embryos. DNMT1 knockdown rescued telomere shortening and developmental defects caused by ZSCAN4 knockdown. In conclusion, ZSCAN4 is involved in the regulation of transcriptional activity and is essential for maintaining telomere length by regulating DNMT1 expression in porcine ZGA.


Asunto(s)
Telómero , Factores de Transcripción , Animales , Ratones , Porcinos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Telómero/genética , Telómero/metabolismo , Acortamiento del Telómero , Proteínas de Unión al ADN/metabolismo , Cigoto/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica
11.
ACS Chem Biol ; 18(7): 1632-1641, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37427444

RESUMEN

Glycosaminoglycan synthases have immense potential in applications involving synthesis of oligosaccharides, using enzymatic approaches and construction of cell factories that produce polysaccharides as critical metabolic components. However, the use of high-throughput activity assays to screen for the evolution of these enzymes can be challenging because there are no significant changes in fluorescence or absorbance associated with glycosidic bond formation. Here, using incorporation of azido-labeled N-acetylhexosamine analogs into bacterial capsule polysaccharides via bacterial metabolism and bioorthogonal chemistry, fluorophores were specifically introduced onto cell surfaces. Furthermore, correlations between detectable fluorescence signals and the polysaccharide-synthesizing capacity of individual bacteria were established. Among 10 candidate genes, 6 members of the chondroitin synthase family were quickly identified in a recombinant Bacillus subtilis host strain. Additionally, directed evolution of heparosan synthase was successfully performed using fluorescence-activated cell sorting of recombinant Escherichia coli O10:K5(L):H4, yielding several mutants with increased activity. Cell-based approaches that selectively detect the presence or absence of synthases within an individual colony of bacterial cells, as well as their level of activity, have broad potential in the exploration and engineering of glycosaminoglycan synthases. These approaches also support the creation of novel strategies for high-throughput screening of enzyme activity based on cell systems.


Asunto(s)
Glicosaminoglicanos , Ingeniería Metabólica , Ensayos Analíticos de Alto Rendimiento , Escherichia coli , Bacterias/genética , Polisacáridos Bacterianos
12.
Biochem Biophys Res Commun ; 675: 113-121, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37467664

RESUMEN

The recent outbreak of Corona Virus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a severe threat to the global public health and economy, however, effective drugs to treat COVID-19 are still lacking. Here, we employ a deep learning-based drug repositioning strategy to systematically screen potential anti-SARS-CoV-2 drug candidates that target the cell entry mechanism of SARS-CoV-2 virus from 2635 FDA-approved drugs and 1062 active ingredients from Traditional Chinese Medicine herbs. In silico molecular docking analysis validates the interactions between the top compounds and host receptors or viral spike proteins. Using a SARS-CoV-2 pseudovirus system, we further identify several drug candidates including Fostamatinib, Linagliptin, Lysergol and Sophoridine that can effectively block the cell entry of SARS-CoV-2 variants into human lung cells even at a nanomolar scale. These efforts not only illuminate the feasibility of applying deep learning-based drug repositioning for antiviral agents by targeting a specified mechanism, but also provide a valuable resource of promising drug candidates or lead compounds to treat COVID-19.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , SARS-CoV-2 , Reposicionamiento de Medicamentos , Simulación del Acoplamiento Molecular , Internalización del Virus , Antivirales/farmacología
13.
Zool Res ; 44(5): 848-859, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37501400

RESUMEN

Activating transcription factor 6 (ATF6), one of the three sensor proteins in the endoplasmic reticulum (ER), is an important regulator of ER stress-induced apoptosis. ATF6 resides in the ER and, upon activation, is translocated to the Golgi apparatus, where it is cleaved by site-1 protease (S1P) to generate an amino-terminal cytoplasmic fragment. Although recent studies have made progress in elucidating the regulatory mechanisms of ATF6, its function during early porcine embryonic development under high-temperature (HT) stress remains unclear. In this study, zygotes were divided into four groups: control, HT, HT+ATF6 knockdown, and HT+PF (S1P inhibitor). Results showed that HT exposure induced ER stress, which increased ATF6 protein expression and led to a decrease in the blastocyst rate. Next, ATF6 expression was knocked down in HT embryos under microinjection of ATF6 double-stranded RNA (dsRNA). Results revealed that ATF6 knockdown (ATF6-KD) attenuated the increased expression of CHOP, an ER stress marker, and Ca 2+ release induced by HT. In addition, ATF6-KD alleviated homeostasis dysregulation among organelles caused by HT-induced ER stress, and further reduced Golgi apparatus and mitochondrial dysfunction in HT embryos. AIFM2 is an important downstream effector of ATF6. Results showed that ATF6-KD reduced the occurrence of AIFM2-mediated embryonic apoptosis at HT. Taken together, our findings suggest that ATF6 is a crucial mediator of apoptosis during early porcine embryonic development, resulting from HT-induced ER stress and disruption of organelle homeostasis.


Asunto(s)
Factor de Transcripción Activador 6 , Retículo Endoplásmico , Animales , Porcinos , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Temperatura , Retículo Endoplásmico/metabolismo , Apoptosis , Homeostasis , Desarrollo Embrionario
14.
Front Cell Dev Biol ; 11: 1147095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37123411

RESUMEN

YME1L1, a mitochondrial metalloproteinase, is an Adenosine triphosphate (ATP)-dependent metalloproteinase and locates in the mitochondrial inner membrane. The protease domain of YME1L1 is oriented towards the mitochondrial intermembrane space, which modulates the mitochondrial GTPase optic atrophy type 1 (OPA1) processing. However, during embryonic development, there is no report yet about the role of YME1L1 on mitochondrial biogenesis and function in pigs. In the current study, the mRNA level of YME1L1 was knocked down by double strand RNA microinjection to the 1-cell stage embryos. The expression patterns of YME1L1 and its related proteins were performed by immunofluorescence and western blotting. To access the biological function of YME1L1, we first counted the preimplantation development rate, diameter, and total cell number of blastocyst on day-7. First, the localization of endogenous YME1L1 was found in the punctate structures of the mitochondria, and the expression level of YME1L1 is highly expressed from the 4-cell stage. Following significant knock-down of YME1L1, blastocyst rate and quality were decreased, and mitochondrial fragmentation was induced. YME1L1 knockdown induced excessive ROS production, lower mitochondrial membrane potential, and lower ATP levels. The OPA1 cleavage induced by YME1L1 knockdown was prevented by double knock-down of YME1L1 and OMA1. Moreover, cytochrome c, a pro-apoptotic signal, was released from the mitochondria after the knock-down of YME1L1. Taken together, these results indicate that YME1L1 is essential for regulating mitochondrial fission, function, and apoptosis during porcine embryo preimplantation development.

15.
J Cell Physiol ; 238(7): 1592-1604, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37204013

RESUMEN

Y-box binding protein 1 (YBX1) is a member of the family of DNA- and RNA-binding proteins that play crucial roles in multiple aspects, including RNA stabilization, translational repression, and transcriptional regulation; however, its roles in embryo development remain less known. In this study, to investigate the function of YBX1 and its mechanism of action in porcine embryo development, YBX1 was knocked down by microinjecting YBX1 siRNA at the one-cell stage. YBX1 is located in the cytoplasm during embryonic development. The mRNA level of YBX1 was increased from the four-cell stage to the blastocyst stage but was significantly decreased in YBX1 knockdown embryos compared with the control. Moreover, the percentage of blastocysts was decreased following YBX1 knockdown compared with the control. Defecting YBX1 expression increased maternal gene mRNA expression and decreased zygotic genome activation (ZGA) gene mRNA expression and histone modification owing to decreased levels of N6-methyladenosine (m6A) writer N6-adenosine-methyltransferase 70 kDa subunit (METTL3) and reader insulin-like growth factor 2 mRNA-binding protein (IGF2BP1). In addition, IGF2BP1 knockdown showed that YBX1 regulated the ZGA process through m6A modification. In conclusion, YBX1 is essential for early embryo development because it regulates the ZGA process.


Asunto(s)
Proteínas de Unión al ADN , Desarrollo Embrionario , Cigoto , Animales , Adenosina/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Porcinos , Cigoto/metabolismo , Proteínas de Unión al ADN/metabolismo
16.
Sci Rep ; 13(1): 8427, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225872

RESUMEN

Heat stress (HS) is a long-standing hurdle that animals face in the living environment. Alpha-lipoic acid (ALA) is a strong antioxidant synthesized by plants and animals. The present study evaluated the mechanism of ALA action in HS-induced early porcine parthenotes development. Parthenogenetically activated porcine oocytes were divided into three groups: control, high temperature (HT) (42 °C for 10 h), and HT + ALA (with 10 µM ALA). The results show that HT treatment significantly reduced the blastocyst formation rate compared to the control. The addition of ALA partially restored the development and improved the quality of blastocysts. Moreover, supplementation with ALA not only induced lower levels of reactive oxygen species and higher glutathione levels but also markedly reduced the expression of glucose regulatory protein 78. The protein levels of heat shock factor 1 and heat shock protein 40 were higher in the HT + ALA group, which suggests activation of the heat shock response. The addition of ALA reduced the expression of caspase 3 and increased the expression of B-cell lymphoma-extra-large protein. Collectively, this study revealed that ALA supplementation ameliorated HS-induced apoptosis by suppressing oxidative and endoplasmic reticulum stresses via activating the heat shock response, which improved the quality of HS-exposed porcine parthenotes.


Asunto(s)
Trastornos de Estrés por Calor , Ácido Tióctico , Animales , Antioxidantes/farmacología , Apoptosis , Blastocisto , Respuesta al Choque Térmico , Porcinos , Ácido Tióctico/farmacología
17.
ACS Nano ; 17(5): 5072-5082, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36802483

RESUMEN

Assembling two-dimensional (2D) nanomaterials into laminar membranes with a subnanometer (subnm) interlayer spacing provides a material platform for studying a range of nanoconfinement effects and exploring the technological applications related to the transport of electrons, ions and molecules. However, the strong tendency for 2D nanomaterials to restack to their bulk crystalline-like structure makes it challenging to control their spacing at the subnm scale. It is thus necessary to understand what nanotextures can be formed at the subnm scale and how they can be engineered experimentally. In this work, with dense reduced graphene oxide membranes as a model system, we combine synchrotron-based X-ray scattering and ionic electrosorption analysis to reveal that their subnanometric stacking can result in a hybrid nanostructure of subnm channels and graphitized clusters. We demonstrate that the ratio of these two structural units, their sizes and connectivity can be engineered by stacking kinetics through the reduction temperature to allow the realization of high-performance compact capacitive energy storage. This work highlights the great complexity of subnm stacking of 2D nanomaterials and provides potential methods to engineer their nanotextures at will.

18.
Sci Adv ; 9(7): eade4770, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36800421

RESUMEN

The introduction of unnatural chemical moieties into glycosaminoglycans (GAGs) has enormous potential to facilitate studies of the mechanism and application of these critical, widespread molecules. Unnatural N-acetylhexosamine analogs were metabolically incorporated into the capsule polysaccharides of Escherichia coli and Bacillus subtilis via bacterial metabolism. Targeted metabolic labeled hyaluronan and the precursors of heparin and chondroitin sulfate were obtained. The azido-labeled polysaccharides (purified or in capsules) were reacted with dyes, via bioorthogonal chemistry, to enable detection and imaging. Site-specific introduction of fluorophores directly onto cell surfaces affords another choice for observing and quantifying bacteria in vivo and in vitro. Furthermore, azido-polysaccharides retain similar biological properties to their natural analogs, and reliable and predictable introduction of functionalities, such as fluorophores, onto azido-N-hexosamines in the disaccharide repeat units provides chemical tools for imaging and metabolic analysis of GAGs in vivo and in vitro.


Asunto(s)
Escherichia coli , Glicosaminoglicanos , Glicosaminoglicanos/química , Escherichia coli/metabolismo , Polisacáridos , Heparina , Sulfatos de Condroitina , Polisacáridos Bacterianos
19.
Cell Prolif ; 56(2): e13352, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36254813

RESUMEN

BACKGROUND: Activating transcription factor 7 (ATF7) is a member of the ATF/cAMP response element (CRE) B superfamily. ATF2, ATF7, and CRE-BPa are present in vertebrates. Drosophila and fission yeast have only one homologue: dATF2 and Atf1, respectively. Under normal conditions, ATF7 promotes heterochromatin formation by recruiting histone H3K9 di- and tri-methyltransferases. Once the situation changes, all members are phosphorylated by the stress-activated kinase P38 in response to various stressors. However, the role of ATF7 in early porcine embryonic development remains unclear. RESULTS: In this study, we found that ATF7 gradually accumulated in the nucleus and then localized on the pericentric heterochromatin after the late 4-cell stage, while being co-localized with heterochromatin protein 1 (HP1). Knockdown of ATF7 resulted in decreases in the blastocyst rate and blastocyst cell number. ATF7 depletion resulted in downregulation of HP1 and histone 3 lysine 9 dimethylation (H3K9me2) expression. These effects were alleviated when P38 activity was inhibited. High temperatures increased the expression level of pP38, while reducing the quality of porcine embryos, and led to ATF7 phosphorylation. The expression level of H3K9me2 and HP1 was decreased and regulated by P38 activity. CONCLUSION: Stress-induced ATF7-dependent epigenetic changes play important roles in early porcine embryonic development.


Asunto(s)
Factores de Transcripción Activadores , Histonas , Animales , Porcinos , Histonas/metabolismo , Factores de Transcripción Activadores/genética , Factores de Transcripción Activadores/metabolismo , Heterocromatina , Temperatura , Epigénesis Genética , Proteínas Cromosómicas no Histona/metabolismo
20.
Theriogenology ; 196: 227-235, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36427391

RESUMEN

In mammals, E2 factor (E2F) acts as a cell cycle regulator. E2F transcription factor 4 (E2F4) is a member of the E2F family of transcription factors and usually represents predominant E2F activity in cells. The E2F4 gene has been extensively studied in animals and is associated with multiple functions, such as cell cycle regulation and apoptosis; however, little is known about its role during embryonic development. In this study, we investigated the function of E2F4 and its mechanism of action in porcine embryo development. For this purpose, we knocked down E2F4 by microinjecting double-stranded RNA of E2F4 at the 1-cell stage. The results showed that E2F4 knockdown in porcine embryos led to a significant decrease in the blastocyst rate and total cell number. Defective E2F4 expression reduced the level of G1/S checkpoints (cyclin E-cyclin-dependent kinase 2) and cell cycle-related gene expression at the 4-cell embryo stage and blastocyst. Moreover, a decrease in E2F4 expression increased phosphorylated H2A.X variant histones and activated ataxia telangiectasia mutated (ATM) and p53-p21 pathway. In addition, E2F4 depletion caused a significant decrease in histone acetylation. Taken together, E2F4 plays a critical role as a transcriptional activator in the development of porcine embryos, an observation that contradicts its well-established role as a transcription repressor.


Asunto(s)
Desarrollo Embrionario , Porcinos , Animales , Ciclo Celular , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA