RESUMEN
BACKGROUND: Long non-coding RNA LINC00319 has been implicated in the progression of various cancers, including oral squamous cell carcinoma (OSCC). While our previous work has revealed some aspects of LINC00319's role in OSCC, including its upregulation and involvement in a competing endogenous RNA (ceRNA) mechanism, the full extent of its functions and regulatory mechanisms in OSCC progression remain to be fully elucidated. OBJECTIVE: This study aimed to investigate the function of LINC00319 in OSCC and its potential interaction with the STAT3 signaling pathway, thus uncovering novel regulatory mechanisms and therapeutic targets. METHODS: Bioinformatics analysis was performed using TCGA data to evaluate LINC00319 expression in OSCC tissues and its correlation with STAT3 signaling. The direct binding between LINC00319 and STAT3 was examined by RNA pull-down, FISH, and RIP assays. Functional experiments, including CCK-8, transwell migration and invasion assays, and western blot analysis of EMT markers and STAT3 pathway activation, were conducted to assess the effects of LINC00319 on OSCC cell behaviors and its interaction with the STAT3 signaling pathway. In vivo xenograft models were established to validate the role of LINC00319 in tumor growth and STAT3 activation. RESULTS: LINC00319 expression was significantly upregulated in OSCC tissues compared to normal tissues, and high LINC00319 expression correlated with STAT3 signaling activation. Mechanistically, LINC00319 directly bound to STAT3 protein and promoted its phosphorylation at Tyr705. LINC00319 overexpression enhanced, while its knockdown suppressed, the proliferation, migration, invasion, and EMT of OSCC cells. These oncogenic effects were mediated through STAT3 activation and could be reversed by the STAT3 inhibitor stattic. In vivo experiments further confirmed that LINC00319 silencing inhibited tumor growth and STAT3 phosphorylation. CONCLUSION: This study uncovers that LINC00319 promotes OSCC tumorigenesis by directly binding to and activating STAT3 signaling. These findings provide new insights into the regulatory mechanisms of STAT3 by long non-coding RNAs and highlight the potential of LINC00319 as a biomarker and therapeutic target in OSCC.
RESUMEN
PURPOSE: This study aimed to investigate the clinical safety and efficacy of laparoscopic lateral suspension (LLS) with mesh in the treatment of severe anterior and apical pelvic organ prolapse (POP) Chinese women with a 2-year follow-up. METHODS: We conducted an observational cohort study. Sixty patients who presented apical (uterovaginal or vault) and anterior prolapse at stage 3 or higher were enrolled. The LLS surgical procedure was performed in accordance with Dubuisson standard operation. The objective and subjective cures as well as the surgery-related complications were evaluated. The POP-related questionnaires were used to evaluate the quality of life before operation and at 24 months after operation follow-up. RESULTS: Objective cure rates at 2 years of follow-up were 88.3% for the anterior compartment, 100% for the apical compartment and 93.3% for the posterior compartment. The subjective cure rate reached to 93.3%. There were statistically significant lower scores of the pelvic floor impact questionnaire-7 (PFIQ-7) and the pelvic floor distress inventory-short form-20 (PFDI-20) for all women after surgery and they exhibited similar scores of the pelvic organ prolapsed-urinary incontinence sexual questionnaire-12 (PISQ-12) (P = 0.317). And no significant difference was demonstrated in international consultation on the incontinent questionnaire short form (ICI-Q-SF) (P = 0.551). No major complications associated with LLS were observed in our study. CONCLUSION: We consider that LLS with mesh operation is safe, feasible and effective to correct severe apical and anterior POP after 2-year follow-up.
RESUMEN
Chiral microlasers hold great promise for optoelectronics from integrated photonic devices to high-density quantum information processing. Despite significant progress in lead-halide perovskite emitters, chiral lasing with high dissymmetry factors (glum) has not yet been realized. Here, we demonstrate chiral single-mode microlasers with exceptional stability and tunable emission across the visible range by combining CsPbClxBr3-x perovskite microrods (MRs) with a cholesteric liquid crystal (CLC) layer. The MRs lase via a whispering gallery mode (WGM) microcavity and confer chirality through the encapsulated CLC layer, thus exhibiting circularly polarized lasing with dissymmetry factors reaching 1.62. Importantly, we demonstrate wavelength-tunable high dissymmetry chiral lasers in a broad spectral range by tuning the halide composition and using CLC layers with the desired photonic bandgap (PBG). This facile approach to generate chiral lasing not only is applicable to semiconductor nano- and microcrystals but also paves the way for potential integration into nanoscale photonic devices.
RESUMEN
Infrared birefringent crystals that hold significant importance for optoelectronic application have been rarely reported. Traditional tetrahedral PS4, ethane-like P2S6, and octahedral InS6 units in thiophosphates typically manifest near isotropy, often resulting in extremely small birefringence. However, this study prepares α-Rb2InP2S7 (1), ß-Rb2InP2S7 (2), and Cs2InP2S7 (3), consisting of the aforementioned microstructures, notably exhibiting the highest refractive index difference or birefringence values (0.247, 0.298, and 0.250 at 546 nm, respectively) among thiophosphates, the middle one being larger than that of commercial birefringent materials. This unusual increase in birefringence can be primarily attributed to two key factors: (1) simultaneous stretching and compressing of the P-S and In-S covalent bond interactions, generating high polarizability anisotropy of InS6, PS4, and P2S6 polyhedral units; (2) the additional incorporation of alkali metals that further reduces the dimensionality of the crystal structure, creating one-dimensional [InP2S7]2- structures with increasing polarizability anisotropy. This study presents an alternative approach to enhance birefringent materials by reconstructing covalent bond interactions and specific spatial arrangements.
RESUMEN
Gastric cancer (GC) is a highly heterogeneous and aggressive malignant tumor that seriously affects the life safety of people all over the world. Its early manifestations are subtle. The present study aimed to investigate the clinical significance of serum lipid profiles, insulin resistance markers including the triglyceride-glucose (TyG) index and the atherosclerotic index (AI), in GC patients. A retrospective analysis encompassed 215 GC patients and 827 healthy individuals. The study results show that the total cholesterol, triglycerides, low-density lipoprotein, high-density lipoprotein levels, and the TyG index of GC patients were significantly lower than those of the control group before and after propensity score matching analysis. In the GC group, the levels of CEA, CA199, CA125, and CA724 tumor markers were higher than those in the healthy control group. Patients in advanced stages exhibited lower serum levels of serum lipids and TyG index compared to those in early stages. ROC analysis revealed that the TyG index, CA125, and CA199 combination yielded the highest positive prediction rate for GC at 98.6%. TyG index is significantly associated with the risk of adverse reactions after chemotherapy (OR = 1.104, 95% CI 1.028-1.186, P < 0.01). Multiple tumor markers and the TyG index combined detection showed correlations with five adverse reactions caused by chemotherapy (r < 0.6, P < 0.05). Preoperative lipid profiles in the serum show a strong correlation with patients diagnosed with GC. Evaluating a combination of various serum lipids and cancer markers significantly improves diagnostic precision for GC and the ability to predict chemotherapy side effects.
Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores , Biomarcadores de Tumor , Resistencia a la Insulina , Neoplasias Gástricas , Triglicéridos , Humanos , Masculino , Neoplasias Gástricas/sangre , Neoplasias Gástricas/diagnóstico , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Biomarcadores de Tumor/sangre , Pronóstico , Triglicéridos/sangre , Antígenos de Carbohidratos Asociados a Tumores/sangre , Anciano , Lípidos/sangre , Glucemia/análisis , Glucemia/metabolismo , Antígeno Carcinoembrionario/sangre , Estudios de Casos y Controles , AdultoRESUMEN
Recently, ozone ï¼O3ï¼ pollution in Shangqiu has become increasingly prominent, especially in summer and autumn, crucially affecting the local environmental air quality. Based on the monitoring data of O3 pollution days from the Environmental Monitoring Station in June and September 2022 ï¼representing summer and autumnï¼ in Shangqiu, an observation-based model ï¼OBMï¼ was used to study the causes and photochemical reaction characteristics of O3 pollution in the city and precursor emission reduction strategies were studied. The observation results indicated that during summer in Shangqiu, the ρï¼O3ï¼ and O3 daily maximum 8 h moving concentrations [ρï¼MDA8-O3ï¼] were 149.7 µg·m-3 and 195.4 µg·m-3, whereas in autumn, ρï¼O3ï¼ and ρï¼MDA8-O3ï¼ were 119.8 µg·m-3 and 173.9 µg·m-3, respectivelyï¼ the O3 concentration in summer was significantly higher than that in autumn. Ozone sensitivity research showed that the generation of O3 in summer and autumn in Shangqiu was controlled by volatile organic compounds ï¼VOCsï¼. Among them, oxygen-containing volatile organic compounds ï¼OVOCsï¼, aromatic hydrocarbons, and alkenes contributed the most to the ozone generation potential ï¼OFPï¼ and ·OH reactivity ï¼L·OHï¼, and the control must have been strengthened. The OBM simulation results indicated that the maximum O3 generation rates in summer and autumn were 23.0×10-9 h-1 and 13.6×10-9 h-1, with maximum net generation rates of 17.4×10-9 h-1 and 10.4×10-9 h-1 and the maximum and maximum net generation rates of O3 in summer were 1.68 times higher than those in autumn, indicating that the photochemical reactions in summer were significantly stronger than those in autumn. Compared with that in summer, the generation of O3 in autumn was greatly influenced by regional inputs from other regions or cities, with a maximum input of 14.2×10-9 h-1. The prevention and control of O3 pollution in the summer and autumn seasons in Shangqiu should mainly focus on controlling VOCs. The reduction ratio of VOCs/nitrogen oxides ï¼NOxï¼ in autumn should be greater than that in summer and the reduction ratios of 3â¶1 in summer and 4â¶1 in autumn could be adopted for control.
RESUMEN
Sea cucumbers are predominant deposit feeders in benthic ecosystems, providing protective benefits to coral reefs by reducing disease prevalence. However, how they receive sufficient nutrition from seabed sediments remains poorly understood. Here, we investigate Holothuria leucospilota, an ecologically significant tropical sea cucumber, to elucidate digestive mechanisms underlying marine deposit-feeding. Genomic analysis reveals intriguing evolutionary adaptation characterized by an expansion of digestive carbohydrase genes and a contraction of digestive protease genes, suggesting specialization in digesting microalgae. Developmentally, two pivotal dietary shifts, namely, from endogenous nutrition to planktonic feeding, and from planktonic feeding to deposit feeding, induce changes in digestive tract enzyme profiles, with adults mainly expressing carbohydrases and lipases. A nuanced symbiotic relationship exists between gut microbiota and the host, namely, specific resident bacteria supply crucial enzymes for food digestion, while other bacteria are digested and provide assimilable nutrients. Our study further identifies Holothuroidea lineage-specific lysozymes that are restrictedly expressed in the intestines to support bacterial digestion. Overall, this work advances our knowledge of the evolutionary innovations in the sea cucumber digestive system which enable them to efficiently utilize nutrients from seabed sediments and promote food recycling within marine ecosystems.
Asunto(s)
Microbioma Gastrointestinal , Sedimentos Geológicos , Glicósido Hidrolasas , Pepinos de Mar , Simbiosis , Animales , Sedimentos Geológicos/microbiología , Pepinos de Mar/microbiología , Pepinos de Mar/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Holothuria/microbiología , Holothuria/fisiología , Holothuria/genética , Filogenia , Evolución Biológica , Ecosistema , Conducta Alimentaria/fisiología , Microbiota/genética , Microbiota/fisiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificaciónRESUMEN
Artificial sweeteners are generally used and recommended to alternate added sugar for health promotion. However, the health effects of artificial sweeteners remain unclear. In this study, we included 6371 participants from the National Health and Nutrition Examination Survey with artificial sweetener intake records. Logistic regression and Cox regression were applied to explore the associations between artificial sweeteners and risks of cardiometabolic disorders and mortality. Mendelian randomisation was performed to verify the causal associations. We observed that participants with higher consumption of artificial sweeteners were more likely to be female and older and have above medium socio-economic status. After multivariable adjustment, frequent consumers presented the OR (95 % CI) for hypertension (1·52 (1·29, 1·80)), hypercholesterolaemia (1·28 (1·10, 1·50)), diabetes (3·74 (3·06, 4·57)), obesity (1·52 (1·29, 1·80)), congestive heart failure (1·89 (1·35, 2·62)) and heart attack (1·51 (1·10, 2·04)). Mendelian randomisation confirmed the increased risks of hypertension and type 2 diabetes. Moreover, an increased risk of diabetic mortality was identified in participants who had artificial sweeteners ≥ 1 daily (HR = 2·62 (1·46, 4·69), P = 0·001). Higher consumption of artificial sweeteners is associated with increased risks of cardiometabolic disorders and diabetic mortality. These results suggest that using artificial sweeteners as sugar substitutes may not be beneficial.
RESUMEN
Infertility is associated with the alteration of the seminal microbiome. However, the onset of dysbiosis remains controversial and the involvement of host factors remains elusive. This study investigates the alterations of the seminal microbiome in male infertility and examines the association and function of DEFB119, a reproductive-tract-specific host antimicrobial peptide, on the seminal microbiome and male fertility. While we observed comparable genera, diversity and evenness of bacterial communities, a marked decrease in the modularity of the metacommunities was observed in patients with abnormal spermiogram (n = 57) as compared to the control (n = 30). A marked elevation of DEFB119 was observed in a subpopulation of male infertile patients (n = 5). Elevated seminal DEFB119 was associated with a decrease in the observed genera, diversity and evenness of bacterial communities, and further distortion of the metacommunities. Mediation analysis suggests the involvement of elevated DEFB119 and dysbiosis of the seminal microbiome in mediating the abnormalities in the spermiogram. Functional experiments showed that recombinant DEFB119 significantly decrease the progressive motility of sperm in patients with abnormal spermiogram. Moreover, DEFB119 demonstrated species-specific antimicrobial activity against common seminal and nonseminal species. Our work identifies an important host factor that mediates the host-microbiome interaction and stratifies the seminal microbiome associated with male infertility. These results may lead to a new diagnostic method for male infertility and regimens for formulating the microbiome in the reproductive tract and other organ systems.
RESUMEN
Renewable alternatives for nonelectrifiable fossil-derived chemicals are needed and plant matter, the most abundant biomass on Earth, provide an ideal feedstock. However, the heterogeneous polymeric composition of lignocellulose makes conversion difficult. Lignin presents a formidable barrier to fermentation of nonpretreated biomass. Extensive chemical and enzymatic treatments can liberate fermentable carbohydrates from plant biomass, but microbial routes offer many advantages, including concomitant conversion to industrial chemicals. Here, testing of lignin content of nonpretreated biomass using the cellulolytic thermophilic bacterium, Anaerocellum bescii, revealed that the primary microbial degradation barrier relates to methoxy substitutions in lignin. This contrasts with optimal lignin composition for chemical pretreatment that favors high S/G ratio and low H lignin. Genetically modified poplar trees with diverse lignin compositions confirm these findings. In addition, poplar trees with low methoxy content achieve industrially relevant levels of microbial solubilization without any pretreatments and with no impact on tree fitness in greenhouse.
Asunto(s)
Biomasa , Fermentación , Lignina , Populus , Lignina/metabolismo , Populus/metabolismo , Populus/genética , Bacterias/metabolismo , Bacterias/genética , Plantas/metabolismoRESUMEN
Rainforest conversion into rubber (Hevea brasiliensis) plantations (RP) alters global carbon cycling and contributes to climate change. However, the impact of this widespread tropical land use change on various elements of the carbon cycle is poorly understood. Here, we aimed to investigate the impact of rainforest conversion into RP on soil-dissolved organic carbon (DOC), one of the most mobile organic matter (OM) in the terrestrial ecosystem that causes the transformation and migration of C. We also explored the underlying edaphic factors regulating soil DOC changes. Our study sites were rubber monoculture, mixed-rubber plantations (H. brasiliensis, Ficus langkokensis, and Actinodaphne henryi), and a reference rainforest. We found that soil DOC concentration was 150-200% higher in RP than in rainforests, with an unchanged pattern across the seasons (dry and rainy) and plantation type. These results were concomitant with degradation in main soil properties, markedly including lower pH, electrical conductivity, SOC, available nitrogen, available phosphorus, total nitrogen (TN), and total phosphorus (TP), following the RP establishment and explicitly having a significant negative correlation with DOC. Our fitted structure equation model (SEM) highlights that RP caused accelerated DOC production and a higher DOC/DN ratio by decreasing SOC (38.5%) and nutrients (TN and TP). Further, the SEM revealed a significant negative correlation between microbial biomass C (MBC) and N (MBN) and the DOC/DN ratio, implying limited microbial degradation of DOC under RP. This is further supported by our findings of 81.1% lower MBC per unit DOC and 37.1% lower MBN per unit DN under RP compared to rainforests, indicating poor transformation of DOC to microbial biomass under RP. Collectively, our findings suggest that RP with high nutrient demands and altered soil properties lead to increased leaching of DOC due to its limited utilization by microbes. These findings underscore the importance of robust and sustainable soil management (such as optimizing plant density and legume intercropping) in RP to improve soil health and minimize DOC leaching and its potential environmental consequences.
RESUMEN
Janus TiPX (X = F, Cl, and Br) monolayers were systematically investigated through first-principles calculations. The Janus TiPX monolayers exhibit mechanical and dynamic stability. Two monolayers are indirect bandgap semiconductors, except the TiPBr monolayer, which has the features of a quasi-direct bandgap semiconductor. Biaxial strain can modify the band gap of single layers. The Janus TiPX monolayers have remarkable flexibility and piezoelectric properties. In particular, the TiPF monolayer shows high horizontal (44.18 pm V-1) and vertical piezoelectric coefficients (-3.59 pm V-1). These values exceed those of conventional bulk materials, like GaN (3.1 pm V-1) and α-quartz (2.3 pm V-1). All of the monolayers have absorption coefficients of 105 cm-1 for visible and ultraviolet (UV) light, which are one order of magnitude greater than that of MoSSe. Furthermore, TiPX monolayers have high carrier mobility. Janus TiPX monolayers represent a class of two-dimensional (2D) materials with exceptional properties and multifunctionality, holding significant promise for various applications in piezoelectric sensors, solar cells, and nano-electronic devices.
RESUMEN
Purpose: Recently, diffusion posterior sampling (DPS), where score-based diffusion priors are combined with likelihood models, has been used to produce high-quality computed tomography (CT) images given low-quality measurements. This technique permits one-time, unsupervised training of a CT prior, which can then be incorporated with an arbitrary data model. However, current methods rely on a linear model of X-ray CT physics to reconstruct. Although it is common to linearize the transmission tomography reconstruction problem, this is an approximation to the true and inherently nonlinear forward model. We propose a DPS method that integrates a general nonlinear measurement model. Approach: We implement a traditional unconditional diffusion model by training a prior score function estimator and apply Bayes' rule to combine this prior with a measurement likelihood score function derived from the nonlinear physical model to arrive at a posterior score function that can be used to sample the reverse-time diffusion process. We develop computational enhancements for the approach and evaluate the reconstruction approach in several simulation studies. Results: The proposed nonlinear DPS provides improved performance over traditional reconstruction methods and DPS with a linear model. Moreover, as compared with a conditionally trained deep learning approach, the nonlinear DPS approach shows a better ability to provide high-quality images for different acquisition protocols. Conclusion: This plug-and-play method allows the incorporation of a diffusion-based prior with a general nonlinear CT measurement model. This permits the application of the approach to different systems, protocols, etc., without the need for any additional training.
RESUMEN
There has been a great deal of work seeking to improve image quality in CT reconstruction through deep-learning-based denoising; however, there are many applications where it is spatial resolution that limits application and diagnostics. In this work, we week to improve spatial resolution in CT reconstructions through a combination of deep learning and physical modeling of detector blur. To achieve this goal, we leverage diffusion models as deep image priors to help regularize a joint deblurring and reconstruction problem. Specifically, we adopt Diffusion Posterior Sampling (DPS) as a way to combine a deep prior with a likelihood-based forward model for the measurements. The model we adopt is nonlinear since detector blur is applied after the nonlinear attenuation given by the Beer-Lambert lab. We trained a score estimator for a CT score-based prior, and then apply Bayes rule to combine this prior with a measurement likelihood score for CT reconstruction with detector blur. We demonstrate the approach in simulated data, and compare image outputs with traditional filtered-backprojection (FBP) and model-based iterative reconstruction (MBIR) across a range of exposures. We find a particular advantage of the DPS approach for low exposure data and report on major differences in the errors between DPS and classical reconstruction methods.
RESUMEN
The objective of this study was to explore the impacts of various ultrasonic powers (0, 300, 500, 700, and 900 W) on the structure and functional attributes of the myofibrillar protein (MP) of Tenebrio molitor. As the ultrasonic intensity escalated, the extraction efficiency and yield of the MP rose, while the particle size and turbidity decreased correspondingly. The reduction in sulfhydryl group content and the increase in carbonyl group content both suggested that ultrasonic treatment promoted the oxidation of the MP to a certain extent, which was conducive to the formation of a denser and more stable gel network structure. This was also affirmed by SEM images. Additionally, the findings of intrinsic fluorescence and FTIR indicated that high-intensity ultrasound significantly altered the secondary structure of the protein. The unfolding of the MP exposed more amino acid residues, the α-helix decreased, and the ß-helix improved, thereby resulting in a looser and more flexible conformation. Along with the structural alteration, the surface hydrophobicity and emulsification properties were also significantly enhanced. Besides that, SDS-PAGE demonstrated that the MP of T. molitor was primarily composed of myosin heavy chain (MHC), actin, myosin light chain (MLC), paramyosin, and tropomyosin. The aforementioned results confirmed that ultrasonic treatment could, to a certain extent, enhance the structure and function of mealworm MP, thereby providing a theoretical reference for the utilization of edible insect proteins in the future, deep-processing proteins produced by T. molitor, and the development of new technologies.
RESUMEN
Oxytocin (OT) is a posterior pituitary hormone that, in addition to its role in regulating childbirth and lactation, also exerts direct regulatory effects on the skeleton through peripheral OT and oxytocin receptor (OTR). Bone marrow mesenchymal stem cells (BMSCs), osteoblasts (OB), osteoclasts (OC), chondrocytes, and adipocytes all express OT and OTR. OT upregulates RUNX2, BMP2, ALP, and OCN, thereby enhancing the activity of BMSCs and promoting their differentiation towards OB rather than adipocytes. OT also directly regulates OPG/RANKL to inhibit adipocyte generation, increase the expression of SOX9 and COMP, and enhance chondrocyte differentiation. OB can secrete OT, exerting influence on the surrounding environment through autocrine and paracrine mechanisms. OT directly increases OC formation through the NκB/MAP kinase signaling pathway, inhibits osteoclast proliferation by triggering cytoplasmic Ca2+ release and nitric oxide synthesis, and has a dual regulatory effect on OCs. Under the stimulation of estrogen, OB synthesizes OT, amplifying the biological effects of estrogen and OT. Mediated by estrogen, the OT/OTR forms a feedforward loop with OB. Apart from estrogen, OT also interacts with arginine vasopressin (AVP), prostaglandins (PGE2), leptin, and adiponectin to regulate bone metabolism. This review summarizes recent research on the regulation of bone metabolism by OT and OTR, aiming to provide insights into their clinical applications and further research.
Asunto(s)
Huesos , Oxitocina , Receptores de Oxitocina , Oxitocina/metabolismo , Humanos , Animales , Huesos/metabolismo , Receptores de Oxitocina/metabolismo , Receptores de Oxitocina/genética , Osteoblastos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteoclastos/metabolismo , Condrocitos/metabolismo , Osteogénesis/fisiologíaRESUMEN
The successful filling of bone defects remains challenging due to the incongruity between bone graft materials and the dynamic process of bone healing. Developing multifunctional materials matching the dynamic process of bone healing offers a viable solution to the current dilemma. Lines of evidence have shown that engineering osteoimmunomodulatory biomaterials can modulate the function of immune cells and thus promote bone regeneration. Herein, we utilized silk fibroin (SF) and polyglycolic acid (PGA) to create a PGA-SF core-shell fibrous scaffold, incorporating interleukin-4 (IL-4) and tricalcium phosphate (TCP) as a codelivery system (PGA/TCP-SF/IL-4), aiming to achieve an initial rapid release of IL-4 and sustained release of TCP. The PGA/TCP-SF/IL-4 scaffold mimicked the native bone structure and showed superior tenacity in the wetting regime. In vitro studies demonstrated that the PGA/TCP-SF/IL-4 scaffold significantly reduced the inflammatory response by upregulating the M2 macrophages, created a favorable microenvironment for osteogenesis, and facilitated osteogenic differentiation and mineralization. Implantation of the PGA/TCP-SF/IL-4 scaffold into the rat skull defect model notably increased the formation of new bones. IL-4 and TCP acted synergistically in attenuating inflammation and enhancing osteogenic differentiation. Overall, this multifunctional scaffold comprehensively considers the various demands in the bone defect region, which might have a significant potential for application in bone reconstruction.