Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Hepatol Int ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39306594

RESUMEN

BACKGROUND: Liver disease has emerged as a significant health concern, characterized by high rates of morbidity and mortality. Circulating exosomes have garnered attention as important mediators of intercellular communication, harboring protein and stable mRNAs, microRNAs, and long non-coding RNAs (lncRNA). This review highlights the involvement of exosomal lncRNA in the pathogenesis and diagnosis of various liver diseases. Notably, exosomal lncRNAs exhibit therapeutic potential as targets for conditions including hepatic carcinoma, hepatic fibrosis, and hepatic viral infections. METHOD: An online screening process was employed to identify studies investigating the association between exosomal lncRNA and various liver diseases. RESULT: Our study revealed a diverse array of lncRNAs carried by exosomes, including H19, Linc-ROR, VLDLR, MALAT1, DANCR, HEIH, ENSG00000248932.1, ENST00000457302.2, ZSCAN16-AS1, and others, exhibiting varied levels across different liver diseases compared to normal liver tissue. These exosomal-derived lncRNAs are increasingly recognized as pivotal biomarkers for diagnosing and prognosticating liver diseases, supported by emerging evidence. However, the precise mechanisms underlying the involvement of certain exosomal lncRNAs remain incompletely understood. Furthermore, the combined analysis of serum exosomes using ENSG00000258332.1, LINC00635, and serum AFP may serve as novel and valuable biomarker for HCC. Clinically, exosomal ATB expression is upregulated in HCC, while exosomal HEIH and RP11-513I15.6 have shown potential for distinguishing HCC related to HCV infection. CONCLUSION: The lack of reliable biomarkers for liver diseases, coupled with the high specificity and sensitivity of exosomal lncRNA and its non-invasive detection, promotes exploring their role in pathogenesis and biomarker for diagnosis, prognosis, and response to treatment liver diseases.

2.
Chem Res Toxicol ; 37(9): 1574-1587, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39235066

RESUMEN

ZLY06 is a dual agonist of peroxisome proliferator-activated receptor (PPAR) δ/γ, showing potential therapeutic effects on metabolic syndrome. However, our research has revealed that ZLY06 exhibits hepatotoxicity in normal C57BL/6J mice, though the precise mechanism remains unclear. This study aims to investigate the manifestations and mechanisms of ZLY06-induced hepatotoxicity. We administered ZLY06 via oral gavage to C57BL/6J mice (once daily for six weeks) and monitored various indicators to preliminarily explore its hepatotoxicity. Additionally, we further investigate the specific mechanisms of ZLY06-induced hepatotoxicity using PPAR inhibitors (GW9662 and GSK0660) and the Protein kinase B (AKT) activator (SC79). Results showed that ZLY06 led to increased serum ALP, ALT and AST, as well as elevated liver index and hepatic lipid levels. There was upregulation in the gene and protein expression of lipid metabolism-related molecules Acc, Scd1, Cd36, Fabp1 and Fabp2 in hepatocytes, with Cd36 showing the most significant change. Furthermore, cotreatment with SC79 significantly reduced ZLY06-induced hepatotoxicity in AML12 cells, evidenced by decreased intracellular TG levels and downregulation of CD36 expression. Specific knockdown of CD36 also mitigated ZLY06-induced hepatotoxicity. The study found that ZLY06 may bind to AKT1, inhibiting its phosphorylation activation, with the downregulation of p-AKT1 preceding the upregulation of CD36. In summary, ZLY06 mediates the upregulation of CD36 by potentially binding to and inhibiting the phosphorylation of AKT1, leading to hepatic lipid metabolism disorder and inducing liver toxicity.


Asunto(s)
Antígenos CD36 , Metabolismo de los Lípidos , Hígado , Ratones Endogámicos C57BL , PPAR gamma , Proteínas Proto-Oncogénicas c-akt , Regulación hacia Arriba , Animales , Antígenos CD36/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosforilación/efectos de los fármacos , Ratones , Regulación hacia Arriba/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , PPAR gamma/agonistas , PPAR gamma/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , PPAR delta/metabolismo , PPAR delta/agonistas , PPAR delta/antagonistas & inhibidores
3.
Pharmacol Res ; 208: 107376, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39216837

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive degenerative disease of skeletal muscle, characterized by intramuscular inflammation, muscle regeneration disorder and replacement of muscle with fibroadipose tissue. DMD is caused by the absence of normal dystrophy. Impaired self-renew ability and limited differentiation capacity of satellite cells are proved as main reasons for muscle regeneration failure. The deficiency of estrogen impedes the process of muscle regeneration. However, the role of estrogen receptor ß (ERß) in muscle regeneration is still unclear. This study aims to investigate the role and the pharmacological effect of ERß activation on muscle regeneration in mdx mice. This study showed that mRNA levels of ERß and myogenic-related genes both witnessed increasing trends in dystrophic context. Our results revealed that treatment with selective ERß agonist (DPN, diarylpropionitrile) significantly increased myogenic differentiation 1 (MyoD-1) level and promoted muscle regeneration in mdx mice. Similarly, in mdx mice with muscle-specific estrogen receptor α (ERα) ablation, DPN treatment still promoted muscle regeneration. Moreover, we demonstrated that myoblasts differentiation was accompanied by raised nuclear accumulation of ERß. DPN treatment augmented the nuclear accumulation of ERß and, thus, contributed to myotubes formation. One important finding was that forkhead box O3A (FOXO3A), as a pivotal transcription factor in Myod-1 transcription, participated in the ERß-promoted muscle regeneration. Overall, we offered an interesting explanation about the crucial role of ERß during myogenesis.


Asunto(s)
Receptor beta de Estrógeno , Proteína Forkhead Box O3 , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne , Proteína MioD , Nitrilos , Propionatos , Regeneración , Animales , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Receptor beta de Estrógeno/agonistas , Proteína MioD/genética , Proteína MioD/metabolismo , Regeneración/efectos de los fármacos , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Nitrilos/farmacología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Ratones , Propionatos/farmacología , Masculino , Desarrollo de Músculos/efectos de los fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Diferenciación Celular/efectos de los fármacos
4.
Chem Biol Interact ; 400: 111157, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39059604

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) was a chronic complication of type 2 diabetes mellitus (T2DM), and this comorbid disease lacked therapeutic drugs. Semen Ziziphi Spinosae (SZS) was the seed of Ziziphus jujuba var. Spinosa (Bunge) Hu ex H.F. Chow, and it could alleviate the symptoms of T2DM patients. As a triterpene saponin, Jujuboside A (Ju A) was the main active substance isolated from SZS and could improve hyperglycemia of diabetic mice. However, it was still unknown whether Ju A has protective effects on T2DM-associated NAFLD. Our study showed that Ju A attenuated T2DM-associated liver damage by alleviating hepatic lipid accumulation, inflammatory response, and oxidative stress in the liver of db/db mice, and high glucose (HG) and free fatty acid (FFA) co-stimulated human hepatocellular carcinomas (HepG2) cells. Along with the improved hyperglycemia and liver injury, Ju A restrained Yin Yang 1 (YY1)/cytochrome P450 2E1 (CYP2E1) signaling in vivo and in vitro. YY1 overexpression intercepted the protective effects of Ju A on T2DM-induced liver injury via promoting hepatic lipid accumulation, inflammatory response, and oxidative stress. While, the blocking effect of YY1 overexpression on Ju A's hepatoprotective effect was counteracted by further treatment of CYP2E1 specific inhibitor diethyldithiocarbamate (DDC) in vitro. In-depth mechanism research showed that Ju A through YY1/CYP2E1 signaling promoted hepatic fatty acid ß-oxidation, and inhibited inflammatory response and oxidative stress by activating peroxisome proliferator-activated receptor alpha (PPARα), leading to the improvement of T2DM-associated NAFLD. Ju A might be a potential agent in the treatment and health care of T2DM-associated liver disease, especially NAFLD.


Asunto(s)
Citocromo P-450 CYP2E1 , Diabetes Mellitus Tipo 2 , Inflamación , Metabolismo de los Lípidos , Hígado , Enfermedad del Hígado Graso no Alcohólico , Estrés Oxidativo , Transducción de Señal , Factor de Transcripción YY1 , Estrés Oxidativo/efectos de los fármacos , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Transducción de Señal/efectos de los fármacos , Ratones , Masculino , Citocromo P-450 CYP2E1/metabolismo , Células Hep G2 , Metabolismo de los Lípidos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factor de Transcripción YY1/metabolismo , Ratones Endogámicos C57BL , Saponinas/farmacología , Saponinas/uso terapéutico
5.
J Appl Toxicol ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39030796

RESUMEN

Bile acid homeostasis is crucial for the normal physiological functioning of the liver. Disruptions in bile acid profiles are closely linked to the occurrence of cholestatic liver injury. As part of our diagnostic and therapeutic approach, we aimed to investigate the disturbance in bile acid profiles during cholestasis and its correlation with cholestatic liver injury. Before the occurrence of liver injury, alterations in bile acid profiles were detected in both plasma and liver between 8 and 16 h, persisting up to 96 h. TCA, TCDCA, and TUDCA in the plasma, as well as TCA, TUDCA, TCDCA, TDCA, TLCA, and THDCA in the liver, emerged as early sensitive and potential markers for diagnosing ANIT-induced cholestasis at 8-16 h. The distinguishing features of ANIT-induced liver injury were as follows: T-BAs exceeding G-BAs and serum biochemical indicators surpassing free bile acids. Notably, plasma T-BAs, particularly TCA, exhibited higher sensitivity to cholestatic hepatotoxicity compared with serum enzyme activity and liver histopathology. Further investigation revealed that TCA exacerbated ANIT-induced liver injury by elevating liver function enzyme activity, inflammation, and bile duct proliferation and promoting the migration of bile duct epithelial cell. Nevertheless, no morphological changes or alterations in transaminase activity indicative of liver damage were observed in the rats treated with TCA alone. Additionally, there were no changes in bile acid profiles or inflammatory responses under physiological conditions with maintained bile acid homeostasis. In summary, our findings suggest that taurine-conjugated bile acids in both plasma and liver, particularly TCA, can serve as early and sensitive markers for predicting intrahepatic cholestatic drugs and can act as potent exacerbators of cholestatic liver injury progression. However, exogenous TCA does not induce liver injury under physiological conditions where bile acid homeostasis is maintained.

6.
Cell Biol Toxicol ; 40(1): 60, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073694

RESUMEN

Triptolide (TP) is a major active and toxic composition of the Chinese medicine Tripterygium wilfordii Hook. F. (TWHF), exhibiting various therapeutic bioactivities. Among the toxic effects, the hepatotoxicity of TP deserves serious attention. Previously, our research group proposed a new view of TP-related hepatotoxicity: hepatic hypersensitivity under lipopolysaccharide (LPS) stimulation. However, the mechanism of TP/LPS-induced hepatic hypersensitivity remains unclear. In this study, we investigated the mechanism underlying TP/LPS-induced hypersensitivity from the perspective of the inhibition of proteasome activity, activated endoplasmic reticulum stress (ERS)-related apoptosis, and the accumulation of reactive oxygen species (ROS). Our results showed that N-acetylcysteine (NAC), a common ROS inhibitor, decreased the expression of cleaved caspase-3 and cleaved PARP, which are associated with FLIP enhancement. Moreover, 4-phenylbutyric acid (4-PBA), an ERS inhibitor, was able to alleviate TP/LPS-induced hepatotoxicity by reducing ERS-related apoptosis protein expression (GRP78, p-eIF2α/eIF2α, ATF4, CHOP, cleaved caspase-3 and cleaved PARP) and ROS levels, with ATF4 being an indispensable mediator. In addition, the proteasome activity inhibitor MG-132 further aggravated ERS-related apoptosis, which indicated that the inhibition of proteasome activity also plays an important role in TP/LPS-related liver injuries. In summary, we propose that TP/LPS may upregulate the activation of ERS-associated apoptosis by inhibiting proteasome activity and enhancing ROS production through ATF4.


Asunto(s)
Acetilcisteína , Apoptosis , Diterpenos , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Compuestos Epoxi , Lipopolisacáridos , Fenantrenos , Complejo de la Endopetidasa Proteasomal , Inhibidores de Proteasoma , Especies Reactivas de Oxígeno , Fenantrenos/farmacología , Fenantrenos/toxicidad , Diterpenos/farmacología , Diterpenos/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Apoptosis/efectos de los fármacos , Lipopolisacáridos/toxicidad , Compuestos Epoxi/toxicidad , Compuestos Epoxi/farmacología , Animales , Especies Reactivas de Oxígeno/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Acetilcisteína/farmacología , Factor de Transcripción Activador 4/metabolismo , Fenilbutiratos/farmacología , Ratones , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Caspasa 3/metabolismo , Masculino , Leupeptinas
7.
Cell Chem Biol ; 31(6): 1203-1218.e17, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906111

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the biosynthesis of nicotinamide adenine dinucleotide (NAD+), making it a potential target for cancer therapy. Two challenges hinder its translation in the clinic: targeting the extracellular form of NAMPT (eNAMPT) remains insufficient, and side effects are observed in normal tissues. We previously utilized proteolysis-targeting chimera (PROTAC) to develop two compounds capable of simultaneously degrading iNAMPT and eNAMPT. Unfortunately, the pharmacokinetic properties were inadequate, and toxicities similar to those associated with traditional inhibitors arose. We have developed a next-generation PROTAC molecule 632005 to address these challenges, demonstrating exceptional target selectivity and bioavailability, improved in vivo exposure, extended half-life, and reduced clearance rate. When combined with nicotinic acid, 632005 exhibits safety and robust efficacy in treating NAPRT-deficient pan-cancers, including xenograft models with hematologic malignancy and prostate cancer and patient-derived xenograft (PDX) models with liver cancer. Our findings provide clinical references for patient selection and treatment strategies involving NAMPT-targeting PROTACs.


Asunto(s)
Antineoplásicos , Niacina , Nicotinamida Fosforribosiltransferasa , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Humanos , Animales , Niacina/química , Niacina/farmacología , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Masculino , Proteolisis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Citocinas/metabolismo , Línea Celular Tumoral , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Estructura Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología
8.
Int J Biochem Cell Biol ; 172: 106585, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734232

RESUMEN

Tamoxifen is an estrogen receptor modulator that has been reported to alleviate hepatic lipid accumulation in mice, but the mechanism is still unclear. Peroxisome fatty acid ß-oxidation is the main metabolic pathway for the overload of long-chain fatty acids. As long-chain fatty acids are a cause of hepatic lipid accumulation, the activation of peroxisome fatty acid ß-oxidation might be a novel therapeutic strategy for metabolic associated fatty liver disease. In this study, we investigated the mechanism of tamoxifen against hepatic lipid accumulation based on the activation of peroxisome fatty acid ß-oxidation. Tamoxifen reduced liver long-chain fatty acids and relieved hepatic lipid accumulation in high fat diet mice without sex difference. In vitro, tamoxifen protected primary hepatocytes against palmitic acid-induced lipotoxicity. Mechanistically, the RNA-sequence of hepatocytes isolated from the liver revealed that peroxisome fatty acid ß-oxidation was activated by tamoxifen. Protein and mRNA expression of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase were significantly increased in vivo and in vitro. Small interfering RNA enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase in primary hepatocytes abolished the therapeutic effects of tamoxifen in lipid accumulation. In conclusion, our results indicated that tamoxifen could relieve hepatic lipid accumulation in high fat diet mice based on the activation of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase-mediated peroxisome fatty acids ß-oxidation.


Asunto(s)
Enoil-CoA Hidratasa , Hepatocitos , Metabolismo de los Lípidos , Hígado , Ratones Endogámicos C57BL , Oxidación-Reducción , Peroxisomas , Tamoxifeno , Animales , Tamoxifeno/farmacología , Ratones , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Masculino , Peroxisomas/metabolismo , Peroxisomas/efectos de los fármacos , Enoil-CoA Hidratasa/metabolismo , Enoil-CoA Hidratasa/genética , Regulación hacia Arriba/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Femenino , Ácidos Grasos/metabolismo
9.
Br J Cancer ; 131(1): 77-89, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38796598

RESUMEN

BACKGROUND: Due to insufficient knowledge about key molecular events, Hepatocellular carcinoma (HCC) lacks effective treatment targets. Spliceosome-related genes were significantly altered in HCC. Oncofetal proteins are ideal tumor therapeutic targets. Screening of differentially expressed Spliceosome-related oncofetal protein in embryonic liver development and HCC helps discover effective therapeutic targets for HCC. METHODS: Differentially expressed spliceosome genes were analysis in fetal liver and HCC through bioinformatics analysis. Small nuclear ribonucleoprotein polypeptide E (SNRPE) expression was detected in fetal liver, adult liver and HCC tissues. The role of SNRPE in HCC was performed multiple assays in vitro and in vivo. SNRPE-regulated alternative splicing was recognized by RNA-Seq and confirmed by multiple assays. RESULTS: We herein identified SNRPE as a crucial oncofetal splicing factor, significantly associated with the adverse prognosis of HCC. SOX2 was identified as the activator for SNRPE reactivation. Efficient knockdown of SNRPE resulted in the complete cessation of HCC tumorigenesis and progression. Mechanistically, SNRPE knockdown reduced FGFR4 mRNA expression by triggering nonsense-mediated RNA decay. A partial inhibition of SNRPE-induced malignant progression of HCC cells was observed upon FGFR4 knockdown. CONCLUSIONS: Our findings highlight SNRPE as a novel oncofetal splicing factor and shed light on the intricate relationship between oncofetal splicing factors, splicing events, and carcinogenesis. Consequently, SNRPE emerges as a potential therapeutic target for HCC treatment. Model of oncofetal SNRPE promotes HCC tumorigenesis by regulating the AS of FGFR4 pre-mRNA.


Asunto(s)
Empalme Alternativo , Carcinogénesis , Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos , Animales , Humanos , Ratones , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Ratones Desnudos , Pronóstico , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo
10.
Food Funct ; 15(5): 2628-2644, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38358014

RESUMEN

As one of the most significant pathological changes of diabetic nephropathy (DN), tubulointerstitial fibrosis (TIF) had a close relationship with tubulointerstitial inflammation (TI), and the occurrence of TI could have resulted from the disrupted tight junctions (TJs) of renal tubular epithelial cells (RTECs). Studies have demonstrated that sodium butyrate (NaB), a typical short chain fatty acid (SCFA), played an important regulatory role in intestinal TJs and inflammation. In this study, our in vivo and in vitro results showed that accompanied by TI, renal tubular TJs were gradually disrupted in the process of DN-related TIF. In HG and LPS co-cultured HK-2 cells and db/db mice, NaB treatment regained the TJs of RTECs via the sphingosine 1-phosphate receptor-1 (S1PR1)/AMPK signaling pathway, relieving inflammation. Small interfering RNA of S1PR1, S1PR1 antagonist W146 and agonist SEW2871, and AMPK agonist AICAR were all used to further confirm the essential role of the S1PR1/AMPK signaling pathway in NaB's TJ protection in RTECs in vitro. Finally, NaB administration not only improved the renal function and TIF, but also relieved the TI of db/db mice. These findings suggested that the use of NaB might be a potential adjuvant treatment strategy for DN-associated TIF, and this protective effect was linked to the TJ modulation of RTECs via the S1PR1/AMPK signaling pathway, leading to the improvement of TI.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Ácido Butírico/farmacología , Ácido Butírico/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Uniones Estrechas/metabolismo , Células Epiteliales/metabolismo , Fibrosis , Diabetes Mellitus/metabolismo
11.
Food Funct ; 15(5): 2772, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38358379

RESUMEN

Removal of Expression of Concern for 'Sodium butyrate ameliorated diabetic nephropathy-associated tubulointerstitial inflammation by modulating tight junction of renal tubular epithelial cells' by Tingting Yang et al., Food Funct., 2022, Accepted Manuscript, https://doi.org/10.1039/D2FO00940D.

12.
J Pharm Anal ; 14(1): 52-68, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38352949

RESUMEN

The occurrence of benign prostate hyperplasia (BPH) was related to disrupted sex steroid hormones, and metformin (Met) had a clinical response to sex steroid hormone-related gynaecological disease. However, whether Met exerts an antiproliferative effect on BPH via sex steroid hormones remains unclear. Here, our clinical study showed that along with prostatic epithelial cell (PEC) proliferation, sex steroid hormones were dysregulated in the serum and prostate of BPH patients. As the major contributor to dysregulated sex steroid hormones, elevated dihydrotestosterone (DHT) had a significant positive relationship with the clinical characteristics of BPH patients. Activation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) by Met restored dysregulated sex steroid hormone homeostasis and exerted antiproliferative effects against DHT-induced proliferation by inhibiting the formation of androgen receptor (AR)-mediated Yes-associated protein (YAP1)-TEA domain transcription factor (TEAD4) heterodimers. Met's anti-proliferative effects were blocked by AMPK inhibitor or YAP1 overexpression in DHT-cultured BPH-1 cells. Our findings indicated that Met would be a promising clinical therapeutic approach for BPH by inhibiting dysregulated steroid hormone-induced PEC proliferation.

13.
Ecotoxicol Environ Saf ; 272: 116072, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38342011

RESUMEN

Triptolide (TP) is the major bioactive component of traditional Chinese medicine Tripterygium wilfordii Hook. F., a traditional Chinese medicinal plant categorized within the Tripterygium genus of the Celastraceae family. It is recognized for its therapeutic potential in addressing a multitude of diseases. Nonetheless, TP is known to exhibit multi-organ toxicity, notably hepatotoxicity, which poses a significant concern for the well-being of patients undergoing treatment. The precise mechanisms responsible for TP-induced hepatotoxicity remain unresolved. In our previous investigation, it was determined that TP induces heightened hepatic responsiveness to exogenous lipopolysaccharide (LPS). Additionally, natural killer (NK) cells were identified as a crucial effector responsible for mediating hepatocellular damage in this context. However, associated activating receptors and the underlying mechanisms governing NK cell represented innate lymphoid cell (ILC) activation remained subjects of inquiry and were not yet investigated. Herein, activating receptor Killer cell lectin like receptor K1 (NKG2D) of group 1 ILCs was specifically upregulated in TP- and LPS-induced acute liver failure (ALF), and in vivo blockade of NKG2D significantly reduced group 1 ILC mediated cytotoxicity and mitigated TP- and LPS-induced ALF. NKG2D ligand UL16-binding protein-like transcript 1 (MULT-1) was found upregulated in liver resident macrophages (LRMs) after TP administration, and LRMs did exhibit NK cell activating effect. Furthermore, M1 polarization of LRMs cells was observed, along with an elevation in intracellular tumor necrosis factor (TNF)-α levels. In vivo neutralization of TNF-α significantly alleviated TP- and LPS-induced ALF. In conclusion, the collaborative role of group 1 ILCs and LRMs in mediating hepatotoxicity was confirmed in TP- and LPS-induced ALF. TP-induced MULT-1 expression in LRMs was the crucial mechanism in the activation of group 1 ILCs via MULT-1-NKG2D signal upon LPS stimulation, emphasizing the importance of infection control after TP administration.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Diterpenos , Fenantrenos , Animales , Humanos , Ratones , Subfamilia K de Receptores Similares a Lectina de Células NK , Lipopolisacáridos/toxicidad , Inmunidad Innata , Fenantrenos/toxicidad , Compuestos Epoxi/toxicidad , Células Asesinas Naturales , Macrófagos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología
14.
Nat Struct Mol Biol ; 31(1): 54-67, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177672

RESUMEN

THEMIS plays an indispensable role in T cells, but its mechanism of action has remained highly controversial. Using the systematic proximity labeling methodology PEPSI, we identify THEMIS as an uncharacterized substrate for the phosphatase SHP1. Saturated mutagenesis assays and mass spectrometry analysis reveal that phosphorylation of THEMIS at the evolutionally conserved Tyr34 residue is oppositely regulated by SHP1 and the kinase LCK. Similar to THEMIS-/- mice, THEMISY34F/Y34F knock-in mice show a significant decrease in CD4 thymocytes and mature CD4 T cells, but display normal thymic development and peripheral homeostasis of CD8 T cells. Mechanistically, the Tyr34 motif in THEMIS, when phosphorylated upon T cell antigen receptor activation, appears to act as an allosteric regulator, binding and stabilizing SHP1 in its active conformation, thus ensuring appropriate negative regulation of T cell antigen receptor signaling. However, cytokine signaling in CD8 T cells fails to elicit THEMIS Tyr34 phosphorylation, indicating both Tyr34 phosphorylation-dependent and phosphorylation-independent roles of THEMIS in controlling T cell maturation and expansion.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Timocitos , Ratones , Animales , Ratones Noqueados , Timocitos/metabolismo , Receptores de Antígenos de Linfocitos T , Transducción de Señal
15.
Xenobiotica ; 54(2): 83-94, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38164702

RESUMEN

Indirubin is the main component of the traditional Chinese medicine Indigo naturalis (IN), a potent agonist of aryl hydrocarbon receptors (AhRs). In China, IN is used to treat psoriasis and ulcerative colitis, and indirubin is used for the treatment of chronic myelogenous leukaemia. However, IN and indirubin have adverse reactions, such as abdominal pain, diarrhoea, and intussusception, and their specific mechanism is unclear.The purpose of our research was to determine the specific mechanism underlying the adverse effects of IN and indirubin. By tracking the modifications in guinea pigs after the intragastric administration of indirubin for 28 days.The results demonstrate that indirubin could accelerate bowel movements and decrease intestinal acetylcholinesterase (AchE) expression. Experiments with NCM460 cells revealed that indirubin significantly reduced the expression of AchE, and the AchE levels were increased after the silencing of AhR and re-exposure to indirubin.This study showed that the inhibition of AchE expression by indirubin plays a key role in the occurrence of adverse reactions to indirubin and that the underlying mechanism is related to AhR-mediated AchE downregulation.


Asunto(s)
Acetilcolinesterasa , Psoriasis , Cobayas , Animales , Indoles/farmacología , Indoles/metabolismo , Carmin de Índigo , Receptores de Hidrocarburo de Aril/metabolismo
16.
Chem Res Toxicol ; 37(2): 407-418, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38284557

RESUMEN

Triptolide (TP) is a remarkable anti-inflammatory and immunosuppressive component separated from Tripterygium wilfordii Hook. F. However, its hepatotoxicity limits its application in the clinical. Our group has proposed a new perspective on TP-induced hepatotoxicity, in which TP enhances liver hypersensitivity upon lipopolysaccharide (LPS) stimulation. Because the cause of the disease is unknown, there is currently no uniform treatment available. In this study, we attempted to determine whether the GSK-3ß-JNK pathway affects liver damage and its regulatory mechanism in response to TP/LPS costimulation. In addition, we investigated the effect of CsA or the GSK 3ß inhibitor CHIR-98014 on TP/LPS-induced hepatotoxicity. The results showed that the TP/LPS cotreatment mice exhibited obvious hepatotoxicity, as indicated by a remarkable increase in the serum ALT and AST levels, glycogen depletion, GSK 3ß-JNK upregulation, and increased apoptosis. Instead of the specific knockdown of JNK1, the specific knockdown of JNK2 had a protective effect. Additionally, 40 mg/kg of CsA and 30 mg/kg of CHIR-98014 might provide protection. In summary, CHIR-98014 could protect against TP/LPS- or TP/TNF-α-induced activation of the GSK 3ß-JNK pathway and mitochondria-dependent apoptosis, improving the indirect hepatotoxicity induced by TP.


Asunto(s)
Aminopiridinas , Enfermedad Hepática Inducida por Sustancias y Drogas , Diterpenos , Fenantrenos , Pirimidinas , Ratones , Animales , Glucógeno Sintasa Quinasa 3 beta/farmacología , Lipopolisacáridos/toxicidad , Mitocondrias , Apoptosis , Diterpenos/farmacología , Fenantrenos/farmacología , Compuestos Epoxi/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control
17.
Basic Clin Pharmacol Toxicol ; 134(3): 315-324, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38048777

RESUMEN

Bile acids are synthesized from cholesterol in the liver. Dysregulation of bile acid homeostasis, characterized by excessive accumulation in the liver, gallbladder and blood, can lead to hepatocellular damage and the development of cholestatic liver disease. Nuclear receptors play a crucial role in the control of bile acid metabolism by efficiently regulating bile acid synthesis and transport in the liver. Among these receptors, peroxisome proliferator-activated receptor (PPAR), a ligand-activated transcription factor belonging to the nuclear hormone receptor superfamily, controls the expression of genes involved in adipogenesis, lipid metabolism, inflammation and glucose homeostasis and has emerged as a potential therapeutic target for the treatment of the metabolic syndrome in the past two decades. Emerging evidence suggests that PPAR activation holds promise as a therapeutic target for cholestatic liver disease, as it affects both bile acid production and transport. This review provides a comprehensive overview of recent advances in elucidating the role of PPAR in the regulation of bile acid metabolism, highlighting the current position of PPAR agonists in the treatment of primary biliary cholangitis. By summarizing the specific regulatory effects of PPAR on bile acids, this review contributes to the exploration of novel therapeutic strategies for cholestatic liver diseases.


Asunto(s)
Hepatopatías , Receptores Activados del Proliferador del Peroxisoma , Humanos , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Ácidos y Sales Biliares , Metabolismo de los Lípidos
18.
Life Sci ; 337: 122355, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38104861

RESUMEN

AIMS: Lithocholic acid (LCA)-induced cholestasis was accompanied by the occurrence of apoptosis, which indicated that anti-apoptosis was a therapeutic strategy for primary biliary cholangitis (PBC). As an agonist of (Farnesoid X receptor) FXR, we supposed that the hepatoprotection of Obeticholic acid (OCA) against cholestatic liver injury is related to anti-apoptosis beside of the bile acids (BAs) regulation. Herein, we explored the non-metabolic regulating mechanism of OCA for resisting LCA-induced cholestatic liver injury via anti-apoptosis. MAIN METHODS: LCA-induced cholestatic liver injury mice were pretreated with OCA to evaluate its hepatoprotective effect and mechanism. Biochemical and pathological indicators were used to detect the protective effect of OCA on LCA-induced cholestatic liver injury. The bile acids (BAs) profile in serum was detected by LC-MS/MS. Hepatocyte BAs metabolism, apoptosis and inflammation related genes and proteins alteration were investigated by biochemical determination. KEY FINDINGS: OCA improved LCA-induced cholestasis and hepatic apoptosis in mice. The BA profile in serum was changed by OCA mainly manifested as a reduction of taurine-conjugated bile acids, which was due to the upregulation of FXR-related bile acid efflux transporters bile salt export pump (BSEP), multi-drug resistant associated protein 2 (MRP2), MRP3 and multi-drug resistance 3 (MDR3). Apoptosis related proteins cleaved caspase-3, cleaved caspase-8 and cleaved PARP were obviously reduced after OCA treatment. SIGNIFICANCE: OCA improved LCA-induced cholestatic liver injury via FXR-induced exogenous cell apoptosis, which will provide new evidence for the application of OCA to ameliorate PBC in clinical.


Asunto(s)
Colestasis , Ácido Litocólico , Ratones , Animales , Ácido Litocólico/efectos adversos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Hígado/metabolismo , Colestasis/inducido químicamente , Colestasis/complicaciones , Colestasis/tratamiento farmacológico , Ácidos y Sales Biliares/metabolismo , Apoptosis
19.
Int Immunopharmacol ; 125(Pt A): 111150, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37924700

RESUMEN

Bile acid (BA) homeostasis throughout the enterohepatic circulation system is a guarantee of liver physiological functions. BA circulation disorders is one of the characteristic clinical manifestations of cholestasis, and have a closely relationship with intestinal barrier function, especially ileum. Here, our in vivo and in vitro studies showed that intestinal tight junctions (TJs) were disrupted by α-naphthylisothiocyanate (ANIT), which also down-regulated the protein expression of sphingosine-1-phosphate receptor 1 (S1PR1) in the top of villus of mice ileum. Activating S1PR1 by specific agonist SEW2871 could improve TJs via inhibiting ERK1/2/LKB1/AMPK signaling pathway in the ileum of ANIT-treated mice and ANIT-cultured Caco-2 cells. SEW2871 not only regained ileum TJs by activating S1PR1 in the epithelial cells of ileum mucosa, but also recovered ileum barrier function, which was further verified by the recovered BA homeostasis in mice ileum (content and tissue) by using of high-performance liquid chromatographytandem mass spectrometry (LC-MS/MS). Subsequently, the improved intestinal injury and inflammation further strengthened that SEW2871 modulated intestinal barrier function in ANIT-treated mice. Finally, our data revealed that along with the down-regulated levels of serum lipopolysaccharides (LPS), SEW2871 improved liver function and relieved hepatitis via blocking TLR4/MyD88/NF-kB signaling pathway in ANIT-treated mice. In conclusion, these results demonstrated that activating intestinal S1PR1 by SEW2871 could modulate intestinal barrier function, leading to the improvement of cholestatic hepatitis in ANIT-treated mice via the "gut-liver" axis.


Asunto(s)
Colestasis , Hepatitis , Animales , Humanos , Ratones , 1-Naftilisotiocianato/efectos adversos , 1-Naftilisotiocianato/metabolismo , 1-Naftilisotiocianato/toxicidad , Células CACO-2 , Colestasis/metabolismo , Cromatografía Liquida , Hepatitis/metabolismo , Hígado/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Espectrometría de Masas en Tándem
20.
Toxicol Lett ; 390: 25-32, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37944651

RESUMEN

Triptolide (TP) is extracted from the traditional Chinese medicine Tripterygium wilfordii Hook. F. (TWHF). Its severe toxic side effects, especially hepatotoxicity, have limited the clinical application of TP-related drugs. In this study, we investigated the mechanism of the hepatotoxic effects of TP from the perspective that TP inhibited the expression of the pro-survival protein X-linked inhibitor of apoptosis protein (XIAP) and enhanced FasL-mediated apoptosis of hepatocytes. TP and CD95/Fas antibody (Jo-2) were administered by gavage to C57BL/6 mice for 7 consecutive days. After co-administration of TP and Jo-2, mouse livers showed large areas of necrosis and apoptosis and significantly increased Caspase-3 activity. KEGG pathway enrichment analysis indicated that TP may cause the development of liver injury through the apoptotic signaling pathway. Proteinprotein interaction networks showed that XIAP played an essential role in this process. TP reduced the protein expression of XIAP after combination treatment with Jo-2/FasL in vivo/in vitro. TP and FasL co-stimulation significantly increased microRNA-137 (miR-137) levels in AML12 cells, while inhibition of miR-137 expression induced a rebound in XIAP protein expression. In conclusion, TP presensitizes hepatocytes and enhances the sensitivity of hepatocytes to the Fas/FasL pathway by inhibiting the protein expression of XIAP, leading to hepatocyte apoptosis.


Asunto(s)
MicroARNs , Proteína Inhibidora de la Apoptosis Ligada a X , Ratones , Animales , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/farmacología , Ratones Endogámicos C57BL , Hígado/metabolismo , Hepatocitos , Apoptosis , MicroARNs/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA