Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Infect Dis ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913690

RESUMEN

Osteopontin (Opn) depletion can improve septic outcomes, but the underlying mechanism remains unknown. In this study, we demonstrated that non-haematopoietic but not haematopoietic Opn depletion improved septic outcomes. Compared to wild-type (WT) mice, co-housed Opn-/- mice displayed enhanced production of antibacterial peptides (AMPs), decreased bacterial loads, and a distinct bacterial composition of gut microbiota. Fecal microbiota transplantation (FMT) and OPN neutralization assay showed that Opn depletion could reduce the bacterial loads and improve septic inflammation. By employing an intestinal organoid culture system, we proved that OPN neutralization in WT organoids could inactivate AKT and decrease FOXO3a phosphorylation, resulting in enhanced AMP production, whereas OPN treatment in OPN deficient organoids could activate AKT and increase FOXO3a phosphorylation, leading to reduced AMP production. Our findings identified OPN as a novel regulatory factor of AMP production to modulate bacterial loads and composition of gut microbiota, in turn affecting sepsis outcomes.

2.
J Adv Res ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735388

RESUMEN

INTRODUCTION: Hepatic ischemia-reperfusion injury (IRI) is an inevitable adverse event following liver surgery, leading to liver damage and potential organ failure. Despite advancements, effective interventions for hepatic IRI remain elusive, posing a significant clinical challenge. The innate immune response significantly contributes to the pathogenesis of hepatic IRI by promoting an inflammatory cytotoxic cycle. We have reported that blocking GSDMD-induced pyroptosis in innate immunity cells protected hepatic IRI from inflammatory injury. However, the search for effective pyroptosis inhibitors continues. OBJECTIVES: This study aims to evaluate whether quercetin, a natural flavonoid, can inhibit GSDMD-induced pyroptosis and mitigate hepatic IRI. METHODS: We established the hepatic IRI murine model and cellular pyroptosis model to evaluate the efficacy of quercetin. RESULTS: Quercetin effectively alleviated hepatic IRI-induced tissue necrosis and inflammation. We found that during hepatic IRI, the cleavage of GSDMD occurred in hepatic macrophages, but not in other non-parenchymal cells. Quercetin inhibited the cleavage of GSDMD in macrophages. Moreover, we found that quercetin blocked the ASC assembly to inhibit the formation of NLRP3 inflammasomes and AIM2 inflammasomes, suppressing macrophage pyroptosis. Co-immunoprecipitation experiments confirmed that quercetin inhibited the interaction between ASC and Caspase-8, which is the mechanism of ASC complex and inflammasome formation. Overexpression of Caspase-8 abolished the anti-pyroptosis effect of quercetin in NLRP3 and AIM2 inflammasome signaling. Furthermore, we found that the hepatoprotective activity of quercetin was reduced in myelocytic GSDMD-deficient mice. CONCLUSION: Our findings suggest that quercetin has beneficial effects on hepatic IRI. Quercetin could attenuate hepatic IRI and target inhibition of macrophage pyroptosis via blocking Caspase-8/ASC interaction. We recommend that quercetin might serve as a targeted approach for the prevention and personalized treatment of hepatic IRI in perioperative patients.

3.
J Ethnopharmacol ; 328: 118005, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38508433

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Reyanning (RYN) mixture is a traditional Chinese medicine composed of Taraxacum, Polygonum cuspidatum, Scutellariae Barbatae and Patrinia villosa and is used for the treatment of acute respiratory system diseases with significant clinical efficacy. AIM OF THE STUDY: Acute lung injury (ALI) is a common clinical disease characterized by acute respiratory failure. This study was conducted to evaluate the therapeutic effects of RYN on ALI and to explore its mechanism of action. MATERIALS AND METHODS: Ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to analyze the chemical components of RYN. 7.5 mg/kg LPS was administered to induce ALI in rats. RYN was administered by gavage at doses of 2 ml/kg, 4 ml/kg or 8 ml/kg every 8 h for a total of 6 doses. Observations included lung histomorphology, lung wet/dry (W/D) weight ratio, lung permeability index (LPI), HE staining, Wright-Giemsa staining. ELISA was performed to detect the levels of TNF-α, IL-6, IL-10, Arg-1,UDPG. Immunohistochemical staining detected IL-6, F4/80 expression. ROS, MDA, SOD, GSH/GSSG were detected in liver tissues. Multiple omics techniques were used to predict the potential mechanism of action of RYN, which was verified by in vivo closure experiments. Immunofluorescence staining detected the co-expression of CD86 and CD206, CD86 and P2Y14, CD86 and UGP2 in liver tissues. qRT-PCR detected the mRNA levels of UGP2, P2Y14 and STAT1, and immunoblotting detected the protein expression of UGP2, P2Y14, STAT1, p-STAT1. RESULTS: RYN was detected to contain 1366 metabolites, some of the metabolites with high levels have anti-inflammatory, antibacterial, antiviral and antioxidant properties. RYN (2, 4, and 8 ml/kg) exerted dose-dependent therapeutic effects on the ALI rats, by reducing inflammatory cell infiltration and oxidative stress damage, inhibiting CD86 expression, decreasing TNF-α and IL-6 levels, and increasing IL-10 and Arg-1 levels. Transcriptomics and proteomics showed that glucose metabolism provided the pathway for the anti-ALI properties of RYN and that RYN inhibited lung glycogen production and distribution. Immunofluorescence co-staining showed that RYN inhibited CD86 and UGP2 expressions. In vivo blocking experiments revealed that blocking glycogen synthesis reduced UDPG content, inhibited P2Y14 and CD86 expressions, decreased P2Y14 and STAT1 mRNA and protein expressions, reduced STAT1 protein phosphorylation expression, and had the same therapeutic effect as RYN. CONCLUSION: RYN inhibits M1 macrophage polarization to alleviate ALI. Blocking glycogen synthesis and inhibiting the UDPG/P2Y14/STAT1 signaling pathway may be its molecular mechanism.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Ratas , Animales , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Interleucina-10/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Cromatografía Liquida , Interleucina-6/metabolismo , Uridina Difosfato Glucosa/metabolismo , Uridina Difosfato Glucosa/farmacología , Uridina Difosfato Glucosa/uso terapéutico , Espectrometría de Masas en Tándem , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Pulmón , Macrófagos/metabolismo , ARN Mensajero/metabolismo
4.
J Inflamm Res ; 16: 1595-1610, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37092126

RESUMEN

Background and Purpose: Current pharmacological approaches to prevent hepatic ischemia/reperfusion injury (IRI) are limited. To mitigate hepatic injury, more research is needed to improve the understanding of hepatic IRI. Depending on traditional Chinese medicine (TCM) theory, acupuncture therapy has been used for the treatment of ischemic diseases with good efficacy. However, the efficacy and mechanism of acupuncture for hepatic IRI are still unclear. Methods: Blood provided to the left and middle lobe of mice livers was blocked with a non-invasive clamp and then the clamps were removed for reperfusion to establish a liver IRI model. Quantitative proteomics approach was used to evaluate the impact of EA pretreatment on liver tissue proteome in the IRI group. Serum biochemistry was used to detect liver injury, inflammation, and oxidative stress levels. H&E staining and TUNEL staining were used to detect hepatocyte injury and apoptosis. Immunohistochemistry and ELISA were used to detect the degree of inflammatory cell infiltration and the level of inflammation. The anti-inflammatory and antioxidant capacities were detected by Quantitative RT-PCR and Western blotting. Results: We found that EA at Zusanli (ST36) has a protective effect on hepatic IRI in mice by alleviating oxidative stress, hepatocyte death, and inflammation response. Nuclear factor E2-related factor 2 (Nrf2) as a crucial target was regulated by EA and was then successfully validated. The Nrf2 inhibitor ML385 and cervical vagotomy eliminated the protective effect in the EA treatment group. Conclusion: This study firstly demonstrated that EA pretreatment at ST36 significantly ameliorates hepatic IRI in mice by inhibiting oxidative stress via activating the Nrf2 signal pathway, which was vagus nerve-dependent.

5.
Am J Pathol ; 192(12): 1745-1762, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36174680

RESUMEN

Ischemia/reperfusion (I/R) injury, aggravated by innate immune cell-mediated inflammatory response, is a major problem in liver transplantation. Stimulator of interferon gene (STING) is a crucial regulatory signaling molecule in the DNA-sensing pathway, and its activation can produce strong innate immunity. However, the STING-mediated innate immune pathway in hepatic I/R injury has not been fully elucidated. In this study, we first examined the STING expression changes in the liver tissues of mice after hepatic I/R injury by using quantitative polymerase chain reaction and Western blot assays. We then investigated the role of STING in I/R injury by using a murine hepatic I/R model. STING up-regulation in mouse liver tissues in response to I/R injury and STING deficiency in myeloid cells was found to significantly ameliorate I/R-induced liver injury and inflammatory responses. STING inhibitors were also able to ameliorate hepatic I/R injury. Mechanically, STING may have a protective effect on hepatic I/R injury by the inhibition of hypoxia-inducible factor-1 alpha and enhancement of phosphorylated AMP-activated protein kinase to reduce macrophage activation. These findings show the potential regulatory effects of STING in hepatic I/R and suggest a new method for clinical protection of hepatic I/R injury.


Asunto(s)
Hepatitis , Hepatopatías , Daño por Reperfusión , Animales , Ratones , Hepatitis/metabolismo , Inflamación/metabolismo , Hígado/metabolismo , Hepatopatías/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Daño por Reperfusión/genética
6.
Clin Transl Med ; 12(9): e1061, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36149763

RESUMEN

BACKGROUND & AIMS: Transient regeneration-associated steatosis (TRAS) is a process of temporary hepatic lipid accumulation and is essential for liver regeneration by providing energy generated from fatty acid ß-oxidation, but the regulatory mechanism underlying TRAS remains unknown. Parkinsonism-associated deglycase (Park7)/Dj1 is an important regulator involved in various liver diseases. In nonalcoholic fatty liver diseased mice, induced by a high-fat diet, Park7 deficiency improves hepatic steatosis, but its role in liver regeneration remains unknown METHODS: Park7 knockout (Park7-/- ), hepatocyte-specific Park7 knockout (Park7△hep ) and hepatocyte-specific Park7-Pten double knockout mice were subjected to 2/3 partial hepatectomy (PHx) RESULTS: Increased PARK7 expression was observed in the regenerating liver of mice at 36 and 48 h after PHx. Park7-/- and Park7△hep mice showed delayed liver regeneration and enhanced TRAS after PHx. PPARa, a key regulator of ß-oxidation, and carnitine palmitoyltransferase 1a (CPT1a), a rate-limiting enzyme of ß-oxidation, had substantially decreased expression in the regenerating liver of Park7△hep mice. Increased phosphatase and tensin homolog (PTEN) expression was observed in the liver of Park7△hep mice, which might contribute to delayed liver regeneration in these mice because genomic depletion or pharmacological inhibition of PTEN restored the delayed liver regeneration by reversing the downregulation of PPARa and CPT1a and in turn accelerating the utilization of TRAS in the regenerating liver of Park7△hep mice CONCLUSION: Park7/Dj1 is a novel regulator of PTEN-dependent fatty acid ß-oxidation, and increasing Park7 expression might be a promising strategy to promote liver regeneration.


Asunto(s)
Hiperplasia Nodular Focal , Enfermedad del Hígado Graso no Alcohólico , Fosfohidrolasa PTEN , Proteína Desglicasa DJ-1 , Animales , Carnitina O-Palmitoiltransferasa/genética , Proliferación Celular , Ácidos Grasos/metabolismo , Hepatectomía , Lípidos , Regeneración Hepática/genética , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , PPAR alfa/genética , PPAR alfa/metabolismo , Fosfohidrolasa PTEN/metabolismo , Proteína Desglicasa DJ-1/genética , Tensinas
7.
BMC Immunol ; 23(1): 45, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123595

RESUMEN

BACKGROUND: Excessive inflammatory response is the primary cause of early death in patients with endotoxemia. Interleukin 22 (IL-22) has been shown to play critical roles in the modulation of infectious diseases, but its function in regulating immune responses during endotoxemia remains unclear. METHODS: Lipopolysaccharide (LPS) was used to induce endotoxemia mouse model with or without a recombinant fusion protein containing human IL-22 (F-652). IL-6, TNF-α, IL-1ß, and MCP-1 were measured by ELISA assays. The type of macrophage was assessed by flow cytometry. Real-time PCR was used to detect the expression of S100A9. RESULTS: We found that F-652 injection significantly improved the survival rates and reduced pro-inflammatory cytokines (IL-6, TNF-a, IL-1ß, MCP-1) in LPS-induced endotoxemia mice. However, the mice injected with F-652 had a higher number of infiltrated immune cells after LPS treatment, suggesting an impaired immune response. Flow cytometry analysis showed a higher number of F4/80+Ly6GhiLy6Chi cells that highly expressed M2-like macrophage markers (Ym1, Arg, CCL17) in the peritoneal cavity of the F-652-treated endotoxemia mice. Further investigation found that these suppressive M2 macrophages might be induced by F-652 since the F-652 treatment could increase S100A9 in vitro. CONCLUSIONS: Our study suggests that IL-22 has a protective role against endotoxemia by inducing the development of immunosuppressive cells through S100A9.


Asunto(s)
Endotoxemia , Animales , Citocinas/metabolismo , Endotoxemia/metabolismo , Humanos , Interleucina-6 , Interleucinas , Lipopolisacáridos , Ratones , Proteínas Recombinantes de Fusión , Factor de Necrosis Tumoral alfa , Interleucina-22
8.
Front Oncol ; 12: 791867, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847907

RESUMEN

The prognosis of patients with cholangiocarcinoma (CCA) is closely related to both immune cell infiltration and mRNA expression. Therefore, we aimed at conducting multi-immune-related gene analyses to improve the prediction of CCA recurrence. Immune-related genes were selected from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and the Immunology Database and Analysis Portal (ImmPort). The least absolute shrinkage and selection operator (LASSO) regression model was used to establish the multi-gene model that was significantly correlated with the recurrence-free survival (RFS) in two test series. Furthermore, compared with single genes, clinical characteristics, tumor immune dysfunction and exclusion (TIDE), and tumor inflammation signature (TIS), the 8-immune-related differentially expressed genes (8-IRDEGs) signature had a better prediction value. Moreover, the high-risk subgroup had a lower density of B-cell, plasma, B-cell naïve, CD8+ T-cell, CD8+ T-cell naïve, and CD8+ T-cell memory infiltration, as well as more severe immunosuppression and higher mutation counts. In conclusion, the 8-IRDEGs signature was a promising biomarker for distinguishing the prognosis and the molecular and immune features of CCA, and could be beneficial to the individualized immunotherapy for CCA patients.

9.
Hepatology ; 76(6): 1706-1722, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35288960

RESUMEN

BACKGROUND AND AIMS: Liver regeneration (LR) is vital for the recovery of liver function after hepatectomy. Limited regeneration capacity, together with insufficient remnant liver volume, is a risk factor for posthepatectomy liver failure (PHLF) resulting from small-for-size syndrome. Although inflammation plays an important role in controlling LR, the underlying mechanisms still remain obscure. APPROACH AND RESULTS: We identified C-C motif chemokine ligand (CCL) 5 as an important negative regulator for LR. CCL5 levels were elevated after partial hepatectomy (PHx), both in healthy donors of living donor liver transplantation (LT) and PHx mouse models. Ccl5 knockout mice displayed improved survival after 90% PHx and enhanced LR 36 h after 70% PHx. However, primary hepatocytes from Ccl5-/- mice exposed to growth factors in vitro showed no proliferation advantage compared to those from wild-type (WT) mice. Flow cytometry analysis showed that proportions of Ly6Clo macrophages were significantly increased in Ccl5-/- mice after 70% PHx. RNA-sequencing analysis revealed that sorted macrophages (CD11b+ Ly6Clo&hi ) manifested enhanced expression of reparative genes in Ccl5-/- mice compared to WT mice. Mechanistically, CCL5 induced macrophages toward proinflammatory Ly6Chi phenotype, thereby inhibiting the production of hepatocyte growth factor (HGF) through the C-C motif chemokine receptor (CCR) 1- and CCR5-mediated forkhead box O (FoxO) 3a pathways. Finally, blockade of CCL5 greatly optimized survival and boosted LR in the mouse PHx model. CONCLUSIONS: Our findings suggest that inhibition of CCL5 is a promising strategy to improve regeneration restoration by enhancing HGF secretion from reparative macrophages through the FoxO3a pathway, which may potentially reduce the mortality of PHLF.


Asunto(s)
Fallo Hepático , Trasplante de Hígado , Animales , Humanos , Ratones , Proliferación Celular , Hepatectomía , Factor de Crecimiento de Hepatocito , Hepatocitos/metabolismo , Ligandos , Hígado/metabolismo , Fallo Hepático/cirugía , Regeneración Hepática/fisiología , Donadores Vivos , Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados
10.
Aging (Albany NY) ; 13(14): 18879-18893, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34289451

RESUMEN

BACKGROUND: DJ-1 (also known as PARK7), a noted protein implicated in modulating ROS production and immune response, has been observed to play critical roles in the pathogenesis of many forms of liver disease through multiple mechanisms. However, its role and specific mechanism in acetaminophen (APAP) -induced liver injury have not been explored. RESULTS: In this present study, by employing an acute liver injury induced by APAP overdose mouse model, we demonstrated that DJ-1 knockout (DJ-1-/-) mice showed reduced liver injury and lower mortality. In accordance with these changes, there were also alleviating inflammatory responses in both the serum and the liver of the DJ-1-/- mice compared to those of the wild-type (WT) mice. Functional experiments showed that APAP metabolism did not affected by DJ-1 deficiency. In addition, to investigate DJ-1 modulates which kind of cell types during APAP-overdose-induced acute liver injury, hepatocyte-specific DJ-1-knockout (Alb-DJ-1-/-) and myeloid-specific DJ-1-knockout (Lysm-DJ-1-/-) mice were generated. Interestingly, hepatic deletion of DJ-1 did not protect APAP-overdose induced hepatotoxicity and inflammation, whereas Lysm-DJ-1-/- mice showed similar protective effects as DJ-1-/- mice which suggest that the protective effects of deletion of DJ-1 was through modulating myeloid cell function. Consistently, there were alleviated pro-inflammatory cells infiltration and reduced reactive oxygen species (ROS) production in the liver of Lysm-DJ-1-/- mice relative to control mice. CONCLUSION: our findings clearly defined that deletion of DJ-1 protects APAP-induced acute liver injury through decreasing inflammatory response, and suggest DJ-1 as a potential therapeutic and/or prophylactic target of APAP-induced acute liver injury.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Mediadores de Inflamación/metabolismo , Hígado/metabolismo , Proteína Desglicasa DJ-1/deficiencia , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Mediadores de Inflamación/inmunología , Hígado/inmunología , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Células Mieloides/metabolismo , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/inmunología , Especies Reactivas de Oxígeno/metabolismo
11.
Cell Mol Gastroenterol Hepatol ; 12(2): 567-584, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33766785

RESUMEN

BACKGROUND & AIMS: DJ-1 is universally expressed in various tissues and organs and is involved in the physiological processes in various liver diseases. However, the role of DJ-1 in liver ischemia-reperfusion (I/R) injury is largely unknown. METHODS: In this study, we first examined the DJ-1 expression changes in the liver tissues of mice and clinical donor after hepatic I/R by both quantitative polymerase chain reaction and Western blotting assays. Then we investigated the role of DJ-1 in I/R injury by using a murine liver I/R model. RESULTS: We demonstrated that DJ-1 down-regulation in both human and mouse liver tissues in response to I/R injury and Dj-1 deficiency in hepatocytes but not in myeloid cells could significantly ameliorate I/R induced liver injury and inflammatory responses. This hepatoprotective effect was dependent on enhanced autophagy in Dj-1 knockout mice, because inhibition of autophagy by 3-methyladenine and chloroquine could reverse the protective effect on hepatic I/R injury in Dj-1 knockout mice. CONCLUSIONS: Dj-1 deficiency in hepatocytes significantly enhanced mitochondrial accumulation and protein stability of PARKIN, which in turn promotes the onset of mitophagy resulting in elevated clearance of damaged mitochondria during I/R injury.


Asunto(s)
Hepatocitos/metabolismo , Hígado/metabolismo , Hígado/patología , Mitofagia , Proteína Desglicasa DJ-1/deficiencia , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Animales , Autofagia , Regulación hacia Abajo , Inflamación/patología , Masculino , Ratones Noqueados , Mitocondrias/metabolismo , Células Mieloides/metabolismo , Sustancias Protectoras/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Estabilidad Proteica , Transporte de Proteínas , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA