Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7102, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155297

RESUMEN

Developing light yet strong aluminum (Al)-based alloys has been attracting unremitting efforts due to the soaring demand for energy-efficient structural materials. However, this endeavor is impeded by the limited solubility of other lighter components in Al. Here, we propose to surmount this challenge by converting multiple brittle phases into a ductile solid solution in Al-based complex concentrated alloys (CCA) by applying high pressure and temperature. We successfully develop a face-centered cubic single-phase Al-based CCA, Al55Mg35Li5Zn5, with a low density of 2.40 g/cm3 and a high specific yield strength of 344×103 N·m/kg (typically ~ 200×103 N·m/kg in conventional Al-based alloys). Our analysis reveals that formation of the single-phase CCA can be attributed to the decreased difference in atomic size and electronegativity between the solute elements and Al under high pressure, as well as the synergistic high entropy effect caused by high temperature and high pressure. The increase in strength originates mainly from high solid solution and nanoscale chemical fluctuations. Our findings could offer a viable route to explore lightweight single-phase CCAs in a vast composition-temperature-pressure space with enhanced mechanical properties.

2.
Materials (Basel) ; 17(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38541422

RESUMEN

Al-based foams have drawn increasing attention from industry due to their integration of structure and functional properties. However, large-sized Al-based foams still cannot be homogeneously strengthened by long-time aging due to their low thermal conductivity. In this study, we proposed an age-hardening approach that was applied in large-sized Al-0.16Sc-0.17Zr (wt.%) foams via micro-alloying with Zr and Ti compared with Al-0.21Sc foams; it not only achieved homogeneous strength by long-term aging but also reduced the cost of the alloy by substituting Zr and Ti for the more expensive Sc content. The results show that the Al3(Sc, Zr, Ti) phase with a core-shell structure as a crucial precipitation strengthening phase by micro-alloying with Zr and Ti was less prone to coarsening after a prolonged aging heat treatment. Therefore, the yielding strength of Al-Sc foam micro-alloying with Zr and Ti remained almost unchanged after a maximum aging time of 1440 h due to less coarsening precipitate, which is consistent with the results of mechanical experiments. These findings provide a new way for the heat treatment strengthening of large-sized Al-based foams, thus promoting their industrial applications.

3.
Nat Commun ; 14(1): 806, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781880

RESUMEN

Oxygen solute strengthening is an effective strategy to harden alloys, yet, it often deteriorates the ductility. Ordered oxygen complexes (OOCs), a state between random interstitials and oxides, can simultaneously enhance strength and ductility in high-entropy alloys. However, whether this particular strengthening mechanism holds in other alloys and how these OOCs are tailored remain unclear. Herein, we demonstrate that OOCs can be obtained in bcc (body-centered-cubic) Ti-Zr-Nb medium-entropy alloys via adjusting the content of Nb and oxygen. Decreasing the phase stability enhances the degree of (Ti, Zr)-rich chemical short-range orderings, and then favors formation of OOCs after doping oxygen. Moreover, the number density of OOCs increases with oxygen contents in a given alloy, but adding excessive oxygen (>3.0 at.%) causes grain boundary segregation. Consequently, the tensile yield strength is enhanced by ~75% and ductility is substantially improved by ~164% with addition of 3.0 at.% O in the Ti-30Zr-14Nb MEA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA