Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Ann Med ; 56(1): 2346537, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38696817

RESUMEN

BACKGROUND: To investigate the effectiveness of the intervention with critical value management and push short messaging service (SMS), and to determine improvement in the referral rate of patients with positive hepatitis C antibody (anti-HCV). METHODS: No intervention was done for patients with positive anti-HCV screening results from 1 January 2015 to 31 October 2021. Patients with positive anti-HCV results at our hospital from 1 November 2021 to 31 July 2022 were informed vide critical value management and push SMS. For inpatients, a competent physician was requested to liaise with the infectious disease physician for consultation, and patients seen in the OPD (outpatient department) were asked to visit the liver disease clinic. The Chi-square correlation test, one-sided two-ratio test and linear regression were used to test the relationship between intervention and referral rate. RESULTS: A total of 638,308 cases were tested for anti-hepatitis C virus (HCV) in our hospital and 5983 of them were positive. 51.8% of the referred patients were aged 18-59 years and 10.8% were aged ≥75 years. The result of Chi-square correlation test between intervention and referral was p = .0000, p < .05. One-sided two-ratio test was performed for statistics of pre-intervention referral rate (p1) and post-intervention referral rate (p2). Normal approximation and Fisher's exact test for the results obtained were 0.000, p < .05, and the alternative hypothesis p1 - p2 < 0 was accepted. The linear regression equation was referral = 0.1396 × intervention + 0.3743, and the result model p = 8.79e - 09, p < .05. The model was significant, and the coefficient of intervention was 0.1396. CONCLUSIONS: The interventions of critical value management and push SMS were correlated with the referral rate of patients with positive anti-HCV.


Asunto(s)
Hepatitis C , Derivación y Consulta , Humanos , Derivación y Consulta/estadística & datos numéricos , Persona de Mediana Edad , Masculino , Femenino , Adulto , Anciano , Adolescente , Hepatitis C/tratamiento farmacológico , Hepatitis C/diagnóstico , Adulto Joven , Anticuerpos contra la Hepatitis C/sangre , Envío de Mensajes de Texto , Mejoramiento de la Calidad
2.
Front Pharmacol ; 15: 1373711, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799166

RESUMEN

Type 2 diabetes mellitus is a chronic metabolic disease characterized by insulin resistance, with high morbidity and mortality worldwide. Due to the tightly intertwined connection between the insulin resistance pathway and the PI3K/AKT signaling pathway, regulating the PI3K/AKT pathway and its associated targets is essential for hypoglycemia and the prevention of type 2 diabetes mellitus. In recent years, metabolites isolated from traditional Chinese medicine has received more attention and acceptance for its superior bioactivity, high safety, and fewer side effects. Meanwhile, numerous in vivo and in vitro studies have revealed that the metabolites present in traditional Chinese medicine possess better bioactivities in regulating the balance of glucose metabolism, ameliorating insulin resistance, and preventing type 2 diabetes mellitus via the PI3K/AKT signaling pathway. In this article, we reviewed the literature related to the metabolites of traditional Chinese medicine improving IR and possessing therapeutic potential for type 2 diabetes mellitus by targeting the PI3K/AKT signaling pathway, focusing on the hypoglycemic mechanism of the metabolites of traditional Chinese medicine in type 2 diabetes mellitus and elaborating on the significant role of the PI3K/AKT signaling pathway in type 2 diabetes mellitus. In order to provide reference for clinical prevention and treatment of type 2 diabetes mellitus.

3.
Ageing Res Rev ; 98: 102319, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719160

RESUMEN

α-Synuclein (α-Syn) is closely related to the pathogenesis of Parkinson's disease (PD). Under pathological conditions, the conformation of α-syn changes and different forms of α-syn lead to neurotoxicity. According to Braak stages, α-syn can propagate in different brain regions, inducing neurodegeneration and corresponding clinical manifestations through abnormal aggregation of Lewy bodies (LBs) and lewy axons in different types of neurons in PD. So far, PD lacks early diagnosis biomarkers, and treatments are mainly targeted at some clinical symptoms. There is no effective therapy to delay the progression of PD. This review first summarized the role of α-syn in physiological and pathological states, and the relationship between α-syn and PD. Then, we focused on the origin, secretion, aggregation, propagation and degradation of α-syn as well as the important regulatory factors in these processes systematically. Finally, we reviewed some potential drug candidates for alleviating the abnormal aggregation of α-syn in order to provide valuable targets for the treatment of PD to cope with the occurrence and progression of this disease.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/tratamiento farmacológico , Animales
4.
J Cosmet Dermatol ; 23(5): 1518-1526, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38409936

RESUMEN

BACKGROUND: The skin is the largest organ in the human body, not only resisting the invasion of harmful substances, but also preventing the loss of moisture and nutrients. Maintaining skin homeostasis is a prerequisite for the proper functioning of the body. Any damage to the skin can lead to a decrease in local homeostasis, such as ultraviolet radiation, seasonal changes, and air pollution, which can damage the skin tissue and affect the function of the skin barrier. OBJECTIVE: This article reviews the maintenance mechanism and influencing factors of skin homeostasis and the symptoms of homeostasis imbalance. METHODS: We searched for articles published between 1990 and 2022 in English and Chinese using PubMed, Web of Science, CNKI, and other databases in the subject area of dermatology, using the following search terms in various combinations: "skin homeostasis," "skin barrier," and "unstable skin." Based on our results, we further refined our search criteria to include a series of common skin problems caused by the destruction of skin homeostasis and its treatments. Limitations include the lack of research on dermatological and cosmetic problems triggered by the disruption of skin homeostasis. RESULTS: This study describes the neuroendocrine-immune system, skin barrier structure, and skin metabolic system that maintain skin homeostasis. In addition, we discuss several common symptoms that occur when skin homeostasis is out of balance, such as dryness, redness, acne, sensitivity, and aging, and explain the mechanism of these symptoms. CONCLUSION: This article provides an update and review for students and practitioners, and provides a theoretical basis for the development of skin care products for the maintenance and repair of skin homeostasis.


Asunto(s)
Homeostasis , Fenómenos Fisiológicos de la Piel , Piel , Humanos , Homeostasis/fisiología , Piel/efectos de la radiación , Piel/metabolismo , Envejecimiento de la Piel/fisiología , Envejecimiento de la Piel/efectos de la radiación , Enfermedades de la Piel/etiología , Enfermedades de la Piel/terapia , Rayos Ultravioleta/efectos adversos
6.
Front Cardiovasc Med ; 10: 1237539, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094121

RESUMEN

Introduction: Chronic heart failure (CHF), as the final stage of the progression of many cardiovascular disorders, is one of the main causes of hospitalization and death in the elderly and has a substantial impact on patients' quality of life (QOL). Exercise-based cardiac rehabilitation (CR) has been shown to considerably enhance QOL and prognosis. Given the barriers to center-based CR faced by most developing countries in the form of expensive instruments, the development of home-based CR is necessary. Tai Chi, as an instrument-free exercise, has been shown to be successful in treating elderly CHF individuals. Fu Yang, as one of the academic concept of Traditional Chinese Medicine (TCM), believes that the fundamental pathogenesis of CHF is the gradual decline of Yang, and emphasizes the restoration of Yang physiological function in the treatment process. Therefore, we develope a home-based Tai Chi exercise rehabilitation program called Fu Yang Tai Chi (FYTC) for elderly CHF patients by combining the Fu Yang Theory of TCM with the CR theory. The objective of this study is to evaluate the effectiveness, acceptability, and safety of the program. Methods and analysis: We suggest conducting a parallel randomized controlled clinical trial with open label. Eighty CHF elderly participants will be randomly assigned in a 1:1 ratio to the FYTC rehabilitation program group or the moderate-intensity aerobic walking control group. Eligible participants will engage in either three sessions weekly of FYTC or walking exercise for 12 weeks. The primary outcome is the relative change in 6 min walk distance (6MWD). The secondary outcomes are the plasma levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP), QOL, left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDd), self-rating anxiety scale (SAS) and depression scale (SDS), exercise skills, and noninvasive hemodynamic monitoring. Throughout the trial, adverse events will be recorded for safety evaluation. Researchers who are blinded to the treatment allocation will analyze the data. Ethics and dissemination: This research was authorized by the Guang'anmen Hospital Ethics Committee of the Chinese Academy of Medical Sciences (2022-141-KY). Our findings will be shared online and in academic conferences as well as in peer-reviewed journals. Trial registration number: ChiCTR2200063511.

7.
Cells ; 12(8)2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37190070

RESUMEN

OTUD5 (OTU Deubiquitinase 5) is a functional cysteine protease with deubiquitinase activity and is a member of the ovarian tumor protease (OTU) family. OTUD5 is involved in the deubiquitination of many key proteins in various cellular signaling pathways and plays an important role in maintaining normal human development and physiological functions. Its dysfunction can affect physiological processes, such as immunity and DNA damage repair, and it can even lead to tumors, inflammatory diseases and genetic disorders. Therefore, the regulation of OTUD5 activity and expression has become a hot topic of research. A comprehensive understanding of the regulatory mechanisms of OTUD5 and its use as a therapeutic target for diseases is of great value. Herein, we review the physiological processes and molecular mechanisms of OTUD5 regulation, outline the specific regulatory processes of OTUD5 activity and expression, and link OTUD5 to diseases from the perspective of studies on signaling pathways, molecular interactions, DNA damage repair and immune regulation, thus providing a theoretical basis for future studies.


Asunto(s)
Reparación del ADN , Neoplasias Ováricas , Femenino , Humanos , Ubiquitinación , Transducción de Señal , Neoplasias Ováricas/genética , Enzimas Desubicuitinizantes/metabolismo
8.
Antioxidants (Basel) ; 12(4)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37107185

RESUMEN

OTU domain-containing protein 3 (OTUD3) knockout mice exhibited loss of nigral dopaminergic neurons and Parkinsonian symptoms. However, the underlying mechanisms are largely unknown. In this study, we observed that the inositol-requiring enzyme 1α (IRE1α)-induced endoplasmic reticulum (ER) stress was involved in this process. We found that the ER thickness and the expression of protein disulphide isomerase (PDI) were increased, and the apoptosis level was elevated in the dopaminergic neurons of OTUD3 knockout mice. These phenomena were ameliorated by ER stress inhibitor tauroursodeoxycholic acid (TUDCA) treatment. The ratio of p-IRE1α/IRE1α, and the expression of X-box binding protein 1-spliced (XBP1s) were remarkably increased after OTUD3 knockdown, which was inhibited by IRE1α inhibitor STF-083010 treatment. Moreover, OTUD3 regulated the ubiquitination level of Fortilin through binding with the OTU domain. OTUD3 knockdown resulted in a decrease in the interaction ability of IRE1α with Fortilin and finally enhanced the activity of IRE1α. Taken together, we revealed that OTUD3 knockout-induced injury of dopaminergic neurons might be caused by activating IRE1α signaling in ER stress. These findings demonstrated that OTUD3 played a critical role in dopaminergic neuron neurodegeneration, which provided new evidence for the multiple and tissue-dependent functions of OTUD3.

9.
Brain Sci ; 13(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36979248

RESUMEN

Nitric oxide (NO) is a crucial factor in regulating neuronal development. However, certain effects of NO are complex under different physiological conditions. In this study, we used differentiated neural stem cells (NSCs), which contained neural progenitor cells, neurons, astrocytes, and oligodendrocytes, to observe the physiological effects of sodium nitroprusside (SNP) on the early developmental stage of the nervous system. After SNP treatment for 24 h, the results showed that SNP at 100 µM, 200 µM, 300 µM, and 400 µM concentrations resulted in reduced cell viability and increased cleaved caspase 3 levels, while no significant changes were found at 50 µM. There were no effects on neuronal differentiation in the SNP-treated groups. The phosphorylation of p38 was also significantly upregulated with SNP concentrations of 100 µM, 200 µM, 300 µM, and 400 µM, with no changes for 50 µM concentration in comparison with the control. We also observed that the levels of phosphorylation increased with the increasing concentration of SNP. To further explore the possible role of p38 in SNP-regulated survival of differentiated NSCs, SB202190, the antagonist of p38 mitogen-activated protein kinase, at a concentration of 10 mM, was pretreated for 30 min, and the ratio of phosphorylated p38 was found to be decreased after treatment with SNP. Survival and cell viability increased in the SB202190 and SNP co-treated group. Taken together, our results suggested that p38 is involved in the cell survival of NSCs, regulated by NO.

10.
Acta Pharmacol Sin ; 44(8): 1564-1575, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36899113

RESUMEN

Growth hormone secretagogue receptor 1a (GHS-R1a) is an important G protein-coupled receptor (GPCR) that regulates a variety of functions by binding to ghrelin. It has been shown that the dimerization of GHS-R1a with other receptors also affects ingestion, energy metabolism, learning and memory. Dopamine type 2 receptor (D2R) is a GPCR mainly distributed in the ventral tegmental area (VTA), substantia nigra (SN), striatum and other brain regions. In this study we investigated the existence and function of GHS-R1a/D2R heterodimers in nigral dopaminergic neurons in Parkinson's disease (PD) models in vitro and in vivo. By conducting immunofluorescence staining, FRET and BRET analyses, we confirmed that GHS-R1a and D2R could form heterodimers in PC-12 cells and in the nigral dopaminergic neurons of wild-type mice. This process was inhibited by MPP+ or MPTP treatment. Application of QNP (10 µM) alone significantly increased the viability of MPP+-treated PC-12 cells, and administration of quinpirole (QNP, 1 mg/kg, i.p. once before and twice after MPTP injection) significantly alleviated motor deficits in MPTP-induced PD mice model; the beneficial effects of QNP were abolished by GHS-R1a knockdown. We revealed that the GHS-R1a/D2R heterodimers could increase the protein levels of tyrosine hydroxylase in the SN of MPTP-induced PD mice model through the cAMP response element binding protein (CREB) signaling pathway, ultimately promoting dopamine synthesis and release. These results demonstrate a protective role for GHS-R1a/D2R heterodimers in dopaminergic neurons, providing evidence for the involvement of GHS-R1a in PD pathogenesis independent of ghrelin.


Asunto(s)
Enfermedad de Parkinson , Receptores de Ghrelina , Animales , Ratones , Receptores de Ghrelina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ghrelina/farmacología , Dopamina/metabolismo , Quinpirol/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Sustancia Negra/metabolismo , Sustancia Negra/patología , Modelos Animales de Enfermedad
11.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36902478

RESUMEN

As a member of the TRIM (tripartite motif) protein family, TRIM56 can function as an E3 ubiquitin ligase. In addition, TRIM56 has been shown to possess deubiquitinase activity and the ability to bind RNA. This adds to the complexity of the regulatory mechanism of TRIM56. TRIM56 was initially found to be able to regulate the innate immune response. In recent years, its role in direct antiviral and tumor development has also attracted the interest of researchers, but there is no systematic review on TRIM56. Here, we first summarize the structural features and expression of TRIM56. Then, we review the functions of TRIM56 in TLR and cGAS-STING pathways of innate immune response, the mechanisms and structural specificity of TRIM56 against different types of viruses, and the dual roles of TRIM56 in tumorigenesis. Finally, we discuss the future research directions regarding TRIM56.


Asunto(s)
Carcinogénesis , Proteínas de Motivos Tripartitos , Virus , Humanos , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Virus/metabolismo
12.
J Alzheimers Dis ; 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36744334

RESUMEN

BACKGROUND: The oxidative stress hypothesis is challenging the dominant position of amyloid-ß (Aß) in the field of understanding the mechanisms of Alzheimer's disease (AD), a complicated and untreatable neurodegenerative disease. OBJECTIVE: The goal of the present study was to uncover the oxidative stress mechanisms causing AD, as well as the potential therapeutic targets and neuroprotective drugs against oxidative stress mechanisms. METHODS: In this study, a systematic workflow combining pharmacological experiments and computational prediction were proposed. 222 drugs and natural products were collected first and then tested on SH-SY5Y cells to obtain phenotypic screening data on neuroprotection. The preliminary screening data were integrated with drug-target interactions (DTIs) and multi-scale biomedical data, which were analyzed with statistical tests and gene set enrichment analysis. A polypharmacology network was further constructed for investigation. RESULTS: 340 DTIs were matched in multiple databases, and 222 cell viability ratios were calculated for experimental compounds. We identified significant potential therapeutic targets based on oxidative stress mechanisms for AD, including NR3C1, SHBG, ESR1, PGR, and AVPR1A, which might be closely related to neuroprotective effects and pathogenesis. 50% of the top 14 enriched pathways were found to correlate with AD, such as arachidonic acid metabolism and neuroactive ligand-receptor interaction. Several approved drugs in this research were also found to exert neuroprotective effects against oxidative stress mechanisms, including beclometasone, methylprednisolone, and conivaptan. CONCLUSION: Our results indicated that NR3C1, SHBG, ESR1, PGR, and AVPR1A were promising therapeutic targets and several drugs may be repurposed from the perspective of oxidative stress and AD.

13.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36835592

RESUMEN

Therapeutic strategies based on neural stem cells (NSCs) transplantation bring new hope for neural degenerative disorders, while the biological behaviors of NSCs after being grafted that were affected by the host tissue are still largely unknown. In this study, we engrafted NSCs that were isolated from a rat embryonic cerebral cortex onto organotypic brain slices to examine the interaction between grafts and the host tissue both in normal and pathological conditions, including oxygen-glucose deprivation (OGD) and traumatic injury. Our data showed that the survival and differentiation of NSCs were strongly influenced by the microenvironment of the host tissue. Enhanced neuronal differentiation was observed in normal conditions, while significantly more glial differentiation was observed in injured brain slices. The process growth of grafted NSCs was guided by the cytoarchitecture of host brain slices and showed the distinct difference between the cerebral cortex, corpus callosum and striatum. These findings provided a powerful resource for unraveling how the host environment determines the fate of grafted NSCs, and raise the prospect of NSCs transplantation therapy for neurological diseases.


Asunto(s)
Células-Madre Neurales , Ratas , Animales , Encéfalo , Diferenciación Celular/fisiología , Corteza Cerebral , Cuerpo Estriado , Trasplante de Células Madre/métodos
14.
Environ Sci Pollut Res Int ; 30(11): 29229-29242, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36409412

RESUMEN

Fermented organic fertilizers made from pig manure contaminated with antibiotics are widely used in fruit tree production. However, their effects on the residual antibiotics and the spread of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in apple orchards are still largely unknown. In the present study, we detected 100 ARGs and 10 MGEs that were transferred from pig manure to an apple orchard. Compared with the original pig manure, significantly greater concentrations of tetracycline, chlortetracycline, oxytetracycline, sulfadiazine, and salfamethyldiazine were observed in anaerobic fermentation residues of the pig manure. The total relative abundance levels of ARGs on the apple pericarp surface, in the orchard soil treated with biogas slurry, and in the orchard soil treated with biogas residue were 122.5, 5.2, 1.4 times higher than those in pristine soil, respectively, which were primarily attributed to the increase in the relative abundance of some ARG subtypes, including blaCTX-M, blaTEM, ermC, sul2, tetO, vgaB, and vgb. Long-term biogas slurry and biogas residue applications to orchard soil enriched bioaccumulation of 10 ARGs and 1 MGEs on the apple pericarp surface with 67.98 the highest factor. This research indicates that the application of anaerobic fermentation residues of pig manure promoted the spread of ARGs in the soil and fruits and increased the level of ARG pollution in the orchard. Results of this study highlight the importance of assessing the ecological safety of organic fertilizers from the perspective of ARGs and indicate that efforts should be devoted to further reducing ARG levels in pig manure before its application to farmland.


Asunto(s)
Antibacterianos , Malus , Porcinos , Animales , Antibacterianos/farmacología , Genes Bacterianos , Estiércol , Fermentación , Anaerobiosis , Fertilizantes/análisis , Biocombustibles , Prevalencia , Farmacorresistencia Microbiana/genética , Suelo/química , Microbiología del Suelo
15.
Front Pharmacol ; 13: 1045501, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523500

RESUMEN

The prevalence and mortality rates of cardiovascular diseases are increasing, and new treatment strategies are urgently needed. From the perspective of basic pathogenesis, the occurrence and development of cardiovascular diseases are related to inflammation, apoptosis, fibrosis and autophagy of cardiomyocytes, endothelial cells and other related cells. The involvement of maternally expressed gene 3 (MEG3) in human disease processes has been increasingly reported. P53 and PI3K/Akt are important pathways by which MEG3 participates in regulating cell apoptosis. MEG3 directly or competitively binds with miRNA to participate in apoptosis, inflammation, oxidative stress, endoplasmic reticulum stress, EMT and other processes. LncRNA MEG3 is mainly involved in malignant tumors, metabolic diseases, immune system diseases, cardiovascular and cerebrovascular diseases, etc., LncRNA MEG3 has a variety of pathological effects in cardiomyocytes, fibroblasts and endothelial cells and has great clinical application potential in the prevention and treatment of AS, MIRI, hypertension and HF. This paper will review the research progress of MEG3 in the aspects of mechanism of action, other systemic diseases and cardiovascular diseases, and point out its great potential in the prevention and treatment of cardiovascular diseases. lncRNAs also play a role in endothelial cells. In addition, lncRNA MEG3 has shown biomarker value, prognostic value and therapeutic response measurement in tumor diseases. We boldly speculate that MEG3 will play a role in the emerging discipline of tumor heart disease.

16.
J Biosci ; 472022.
Artículo en Inglés | MEDLINE | ID: mdl-36550694

RESUMEN

Iron overload can induce oxidative stress, thereby inducing cell peroxidation. Arachidonic acid (ARA) is widely expressed in mammalian cells and esterified to membrane phospholipids. To explore the effect of iron overload on the metabolism of membrane phospholipids MES23.5 cells were treated with various concentrations of ferric ammonium citrate (FAC) to induce oxidative stress. Using UHPLC (I-Class LC, Waters) coupled to a QTRAP (AB Sciex 5500) technology, the contents of 13 substances of ARA and its metabolites were detected. When the cells were given two different concentrations of FAC, we found that both high and low concentrations decrease the expression of ARA (p=0.002, p=0.02) compared with the control group. ARA has three metabolic pathways: the COX pathway, LOX pathway and CYP450 pathway. Compared with the control group, the LTB4 content in the LOX pathway was decreased (p=0.10) after treatment with lowconcentration FAC, while the LTB4 content was increased in the high-concentration treatment group (p=0.06). However, the content of 12S-HETE (p=0.23, p=0.05) in the LOX metabolic pathway decreased with increase of FAC concentration. Similarly, the content of 15S-HETE also decreased with increase of FAC concentration (p=0.17, p=0.02). The other downstream metabolites of ARA, 9S-HODE (p=0.54, p=0.18) and 13S-HODE (p=0.81, p=0.13) were not significantly changed. The contents of thromboxane B2 (TXB2), leukotriene D4 (LTD4), prostaglandin E2 (PGE2), 8-iso-prostaglandin F2α (8-iso-PGF2α), prostaglandin F2α (PGF2α), 6-keto-PGF1α, and prostaglandin D2 (PGD2) were too low to be detected in MES23.5 cells. The above results indicate that oxidative stress caused by iron overload reduces the LOX metabolic pathway of ARA.


Asunto(s)
Dinoprost , Sobrecarga de Hierro , Animales , Ácido Araquidónico/metabolismo , Dinoprost/metabolismo , Leucotrieno B4/metabolismo , Estrés Oxidativo , Fosfolípidos , Ácidos Hidroxieicosatetraenoicos , Mamíferos
17.
Ageing Res Rev ; 82: 101774, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36332756

RESUMEN

Inositol-requiring enzyme 1 α (IRE1α) is a type I transmembrane protein that resides in the endoplasmic reticulum (ER). IRE1α, which is the primary sensor of ER stress, has been proven to maintain intracellular protein homeostasis by activating X-box binding protein 1 (XBP1). Further studies have revealed novel physiological functions of the IRE1α, such as its roles in mRNA and protein degradation, inflammation, immunity, cell proliferation and cell death. Therefore, the function of IRE1α is not limited to its role in ER stress; IRE1α is also important for regulating other processes related to cellular physiology. Furthermore, IRE1α plays a key role in neurodegenerative diseases that are caused by the phosphorylation of Tau protein, the accumulation of α-synuclein (α-syn) and the toxic effects of mutant Huntingtin (mHtt). Therefore, targeting IRE1α is a valuable approach for treating neurodegenerative diseases and regulating cell functions. This review discusses the role of IRE1α in different cellular processes, and emphasizes the importance of IRE1α in neurodegenerative diseases.


Asunto(s)
Endorribonucleasas , Enfermedades Neurodegenerativas , Humanos , Proteínas Serina-Treonina Quinasas/genética , Estrés del Retículo Endoplásmico , Fosforilación
18.
Adv Sci (Weinh) ; 9(30): e2203020, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36050877

RESUMEN

Ghrelin contributes to the communication between the brain and gastrointestinal (GI) tract. Both decreased ghrelin levels and functional GI disorders are early events in Parkinson's disease (PD) patients and animal models. However, the reason is not clear. Here it is found that choline acetyltransferase (ChAT)-positive neurons in the dorsal motor nucleus of the vagus nerve (DMV), are lost in PD transgenic mice. In response to the selective damaging of DMV neurons with mu p75-SAP, a rapid reduction both in plasma total and active ghrelin levels is observed. While by contrast, chemogenetic activation of DMV cholinergic neurons can increase the plasma ghrelin levels. Impairment of cholinergic neurons is accompanied by GI disorders, including decreased stool wet weight, stool dry weight, small intestine advancing rate, and gastric emptying rate, while exogenous ghrelin treatment can partially ameliorate GI dysfunction of A53T α-synuclein transgenic mice. Using pseudorabies virus retrograde trace method, the existence of a direct pathway from the stomach fundus to the DMV is shown. Taken together, the findings suggest that the reduction in plasma ghrelin levels in the early stages of PD may be the result of the lesion of cholinergic neurons in the DMV, thus linking neurodegeneration and GI dysfunction in PD.


Asunto(s)
Enfermedades Gastrointestinales , Enfermedad de Parkinson , Ratones , Animales , alfa-Sinucleína/metabolismo , Colina O-Acetiltransferasa/metabolismo , Ghrelina , Ratones Transgénicos
19.
Am J Transl Res ; 14(8): 5466-5479, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105026

RESUMEN

OBJECTIVES: To validate that dexlansoprazole, an anti-acid drug, can prevent pulmonary artery hypertension (PAH) in preclinical animal models and find the possible mechanism of action of dexlansoprazole for this new indication. METHODS: The efficacy of dexlansoprazole to attenuate PAH in vivo was evaluated in PAH animal models. Plasma guanosine 3', 5'-cyclic phosphate (cGMP) in PAH rats was measured by enzyme linked immunosorbent assay (ELISA). To investigate the anti-PAH effect of dexlansoprazole in vitro, proliferation and migration assays of primary cultured pulmonary artery smooth muscle cells (PASMCs) were performed. Furthermore, dexlansoprazole's function on fibroblast transition of vascular smooth muscle cells (VSMC) was explored by single cell ribonucleic acid (RNA) sequencing and RNAscope. RESULTS: Dexlansoprazole could attenuate the pathologic process in monocrotaline (MCT)-, hypoxia-induced PAH rats and SU5416/hypoxia (SuHy)-induced PAH mice. The intervention with dexlansoprazole significantly inhibited elevated right ventricular systolic pressure (RVSP), right ventricular hypertrophy, and pulmonary vascular wall thickness. Furthermore, plasma cGMP in MCT-induced PAH rats was restored after receiving dexlansoprazole. In vitro, dexlansoprazole could inhibit PASMCs' proliferation and migration stimulated by platelet derived growth factor-BB (PDGF-BB). Moreover, dexlansoprazole significantly ameliorated pulmonary vascular remodeling by inhibiting VSMC phenotypic transition to fibroblast-like cells in a VSMC-specific multispectral lineage-tracing mouse. CONCLUSIONS: Dexlansoprazole can prevent PAH through promoting cGMP generation and inhibiting pulmonary vascular remodeling through restraining PASMCs' proliferation, migration, and phenotypic transition to fibroblast-like cells. Consequently, PAH might be a new indication for dexlansoprazole.

20.
World J Clin Cases ; 10(21): 7376-7385, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-36157988

RESUMEN

BACKGROUND: Safe and effective analgesia strategy remains one of the priorities for pediatric inguinal hernia treatment. AIM: To explore safety and efficacy of dexmededomidine monotherapy for postoperative analgesia in children who received laparoscopic unilateral internal inguinal ring ligation. METHODS: This randomized single-center controlled trial included 390 children (aged 1-3 years, ASA grade I-II), randomly divided into a dexmededomidine group (D group), a dexmededomidine + sufentanil group (DS group), and a sufentanil group (S group). The primary endpoint was percentage of children with the Face, Legs, Activity, Cry, and Consolability (FLACC) score ≤ 3 points 2 h after surgery. RESULTS: The comparisons of the FLACC scores at 2, 4, 6, 8, 12, and 24 h were not significantly different among the three groups (P > 0.05). The sedative effects in the D group were significantly better than those in the S group (P > 0.05), but not significantly different from those in the DS group. The incidence of nausea and vomiting was significantly lower in the D group than in the S group and DS group (P > 0.05). CONCLUSION: Analgesic effects of dexmededomidine monotherapy are comparable to those of sufentanil alone or in combination with dexmededomidine for children who underwent laparoscopic unilateral internal inguinal ring ligation, with better sedative effects and a lower incidence of adverse events.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA