Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Anal Chem ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140171

RESUMEN

In this work, the relationship between electrochemiluminescence (ECL) signal and driving voltage was first studied by self-made reduced and oxidized closed bipolar electrodes (CBPEs). It was found that when the driving voltage was large enough, the maximum ECL signals for the two kinds of CBPEs were the same but their required drive voltages were different. Zinc cobalt nitrogen doped carbon material (ZnCoN-C) had an outstanding electric double layer (EDL) property and conductivity. Therefore, it could significantly reduce the driving voltage of two kinds of CBPE systems, reaching the maximum ECL signal of Ru(bpy)32+. Interestingly, when the ZnCoN-C modified electrode reached the maximum ECL signal, the bare electrode signal was zero. As a proof-of-concept application, a zero-background dual-mode CBPE-ECL biosensor was constructed for the ultrasensitive detection of ochratoxin A (OTA) in beer. Considering that beer samples contained a large number of reducing substances, a reduced CBPE system was selected to build the biosensor. Furthermore, a convenient ECL imaging platform using a smartphone was built for the detection of OTA. This work used a unique EDL material ZnCoN-C to regulate the driving voltage of CBPE for the first time; thus, a novel zero-background ECL sensor was constructed. Further, this work provided a deeper understanding of the CBPE-ECL system and opened a new door for zero-background detection.

2.
Anal Chim Acta ; 1320: 343015, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142786

RESUMEN

Excessive use of antibiotics will enter the water environment and soil through the biological chain, and then transfer to the human body through food, resulting in drug resistance, kidney toxicity and other health problems, so it is urgent to develop highly sensitive detection methods of antibiotics. Here, we designed a dual-mode sensor platform based on closed bipolar electrode (cBPE) electroluminescence (ECL) and mobile phone imaging to detect kanamycin in seawater. The prepared CN-NV-550 displayed extremely intense ECL signal, allowing for convenient mobile phone imaging. The cBPE was combined with DNA cycle amplification technology to prevent the mutual interference between target and the luminescent material, and realized the amplification of signal. In the presence of target Kana, Co3O4 was introduced to the cBPE anode by DNA cycle amplification product, and accelerated the oxidation rate of uric acid (UA). Thus, the electroluminescence response of CN-NV-550 on cBPE cathode was much improved due to the charge balance of the cBPE, achieving both ECL detection and mobile phone imaging assay of Kana, which much improved the accuracy and efficiency of assay. The limit of detection (LOD) in this work is 0.23 pM, and LOD for mobile phone imaging is 0.39 pM. This study integrate ECL imaging visualization of CN-NV-550 and high electrocatalytic activity of Co3O4 into cBPE-ECL detection, providing a new perspective for antibiotic analysis, and has great potential for practical applications, especially in Marine environmental pollution monitoring.


Asunto(s)
Técnicas Electroquímicas , Electrodos , Kanamicina , Mediciones Luminiscentes , Kanamicina/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Antibacterianos/análisis , Técnicas Biosensibles/métodos , Teléfono Celular , Límite de Detección , Agua de Mar/química , Agua de Mar/análisis
3.
Anal Chem ; 96(33): 13690-13698, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39108033

RESUMEN

BRCA1 gene and carcinoembryonic antigen (CEA) are important markers of breast cancer, so accurate detection of them is significant for early detection and diagnosis of breast cancer. In this study, a potential-resolved ratio electrochemiluminescence (ECL) biosensor using perylene diimide (PDI)-metal-organic framework and DNA nanoflowers (NFs)-CdS quantum dots (QDs) was constructed for detection of BRCA1 and CEA. Specifically, PDI-MOF and CdS QDs can generate potential-resolved intense ECL signals only using one coreactant, so the detection procedure can be effectively simplified. PDI-MOF was first attached to the electrode by graphene oxide, and the dopamine (DA) probe was linked to quench the ECL signal by DNA hybridization. In the presence of target BRCA1, it can form a bipedal DNA walker, so the quenching molecules (DA) were detached from the electrode via the walker amplification process aided by Mg2+, so that the PDI signal at -0.25 V was restored for the BRCA1 assay. Moreover, CdS QDs@DNA NFs as amplified signal probes were formed by self-assembly, and the target CEA-amplified product introduced the CdS QDs@DNA NFs to the electrode, so the QD ECL signal at -1.42 V was enhanced, while the ECL signal of PDI is unchanged; thus, CEA detection was achieved by the ratio value between them. Therefore, the detection accuracy is guaranteed by detection of two cancer markers and a ratio value. This biosensor has a great contribution to the development of new ECL materials and a novel ECL technique for fast and efficient multitarget assays, showing great significance for the early monitoring and diagnosis of breast cancer.


Asunto(s)
Proteína BRCA1 , Técnicas Biosensibles , Compuestos de Cadmio , Antígeno Carcinoembrionario , ADN , Técnicas Electroquímicas , Imidas , Mediciones Luminiscentes , Perileno , Puntos Cuánticos , Sulfuros , Perileno/química , Perileno/análogos & derivados , Puntos Cuánticos/química , Compuestos de Cadmio/química , Técnicas Biosensibles/métodos , Sulfuros/química , Técnicas Electroquímicas/métodos , Imidas/química , ADN/química , Humanos , Proteína BRCA1/genética , Proteína BRCA1/análisis , Antígeno Carcinoembrionario/análisis , Antígeno Carcinoembrionario/sangre , Estructuras Metalorgánicas/química
4.
Biosens Bioelectron ; 263: 116611, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39079207

RESUMEN

In this work, a new photoelectrochemical (PEC) biosensor based on triple quenching effect of nanozyme catalyzed precipitation to PEC signal of MgIn2S4 was constructed for ultrasensitive detection of circulating tumor DNA (ctDNA). Enzyme-free amplification technology was used to convert target ctDNA into a large number of product chains (PC) to improve the detection sensitivity. Co3O4 nanozyme with excellent peroxidase (POD)-like activity was introduced to the surface of MgIn2S4 by PC. Co3O4 could oxidize chromogenic agent 3-Amino-9-ethylcarbazole (AEC) to produce red insoluble precipitation in the presence of H2O2, resulting in the PEC signal "off" of MgIn2S4 to achieve ultrasensitive detection of ctDNA. In particular, Co3O4 nanozyme showed three synergistic quenching effects on PEC signal of MgIn2S4, which contributed greatly to improving the detection sensitivity. Firstly, the light absorption range of Co3O4 could reach 1000 nm, and compete with MgIn2S4 for light absorption. Secondly, the produced red precipitation belonged to the insulating material and had large electrochemical impedance, which hindered the transmission of photogenerated carriers. Thirdly, the precipitation also prevented the electron donor ascorbic acid (AA) from transferring electrons to MgIn2S4. This biosensor provided a promising sensitive PEC detection technology for ctDNA, and further broadened the application of nanozymes in the field of PEC analysis.


Asunto(s)
Técnicas Biosensibles , ADN Tumoral Circulante , Técnicas Electroquímicas , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Humanos , ADN Tumoral Circulante/sangre , Límite de Detección , Cobalto/química , Peróxido de Hidrógeno/química , Catálisis , Óxidos
5.
Anal Chim Acta ; 1306: 342585, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692786

RESUMEN

Herein, we developed a convenient and versatile dual-mode electrochemiluminescence (ECL) and photoelectrochemistry (PEC) sensing radar for the detection of Prostate-specific antigen (PSA), which has important implications for detection of low-abundance disease-associated proteins. Cerium-based metal-organic framework (Ce-MOFs) were firstly modified on the electrode, showing well ECL and PEC property. In particular, a unique multifunctional Au@CdS quantum dots (QDs) probe loaded numerous QDs and antibody was fabricated, not only displaying strong ECL and PEC signals, but also having specific recognition to PSA. After the signal probe was linked to the electrode by immune reaction, much amplified signals of ECL and PEC were generated for double-mode detection of PSA. Therefore, this work proposed a multifunctional Au@CdS QDs signal probe with excellent ECL and PEC performance, and developed an ultrasensitive photoelectric biosensing platform for dual-mode detection, which provides an effective method for health monitoring of cancer patients.


Asunto(s)
Compuestos de Cadmio , Técnicas Electroquímicas , Estructuras Metalorgánicas , Antígeno Prostático Específico , Puntos Cuánticos , Sulfuros , Puntos Cuánticos/química , Compuestos de Cadmio/química , Sulfuros/química , Humanos , Antígeno Prostático Específico/análisis , Antígeno Prostático Específico/sangre , Estructuras Metalorgánicas/química , Oro/química , Cerio/química , Técnicas Biosensibles , Procesos Fotoquímicos , Límite de Detección , Electrodos , Mediciones Luminiscentes
6.
Anal Chem ; 96(18): 7073-7081, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38663374

RESUMEN

A spatial-potential-color-resolved bipolar electrode electrochemiluminescence biosensor (BPE-ECL) using a CuMoOx electrocatalyst was constructed for the simultaneous detection and imaging of tetracycline (TET) and lincomycin (LIN). HOF-101 emitted peacock blue light under positive potential scanning, and CdSe quantum dots (QDs) emitted green light under negative potential scanning. CuMoOx could catalyze the electrochemical reduction of H2O2 to greatly increase the Faradic current of BPE and realize the ECL signal amplification. In channel 1, CuMoOx-Aptamer II (TET) probes were introduced into the BPE hole (left groove A) by the dual aptamer sandwich method of TET. During positive potential scanning, the polarity of BPE (left groove A) was negative, resulting in the electrochemical reduction of H2O2 catalyzed by CuMoOx, and the ECL signal of HOF-101 was enhanced for detecting TET. In channel 2, CuMoOx-Aptamer (LIN) probes were adsorbed on the MXene of the driving electrode (DVE) hole (left groove B) by hydrogen-bonding and metal-chelating interactions. LIN bound with its aptamers, causing CuMoOx to fall off. During negative potential scanning, the polarity of DVE (left groove B) was negative and the Faradic current decreased. The ECL signal of CdSe QDs was reduced for detecting LIN. Furthermore, a portable mobile phone imaging platform was built for the colorimetric (CL) detection of TET and LIN. Thus, the multiple mode-resolved detection of TET and LIN could be realized simultaneously with only one potential scan, which greatly improved detection accuracy and efficiency. This study opened a new technology of BPE-ECL sensor application and is expected to shine in microchips and point-of-care testing (POCT).


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Electrodos , Lincomicina , Mediciones Luminiscentes , Tetraciclina , Tetraciclina/análisis , Tetraciclina/química , Técnicas Biosensibles/métodos , Lincomicina/análisis , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , Catálisis , Puntos Cuánticos/química , Compuestos de Cadmio/química , Aptámeros de Nucleótidos/química , Compuestos de Selenio/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Antibacterianos/análisis , Antibacterianos/química
7.
Talanta ; 273: 125978, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38521021

RESUMEN

According to the characteristics of DNA programming, the cascaded nucleic acid amplification technology with larger output can overcome the problem of insufficient sensitivity of single nucleic acid amplification technology, and it combines the advantages of two or even multiple nucleic acid amplification technologies at the same time. In this work, a novel cascade signal amplification strategy with strand displacement amplification (SDA) and cascade hybridization chain reaction (HCR) was proposed for trace detection of hAAG and VEGF165. HAAG-induced SDA produced a large amount of S2 to open H2 on Polystyrene (PS) nanospheres, thereby triggering cascade HCR to form DNA dendritic nanostructures with rich fluorescence (FL) signal probes (565 nm). It could realize the amplification of FL signals for the detection of hAAG. Moreover, many doxorubicin (Dox) were loaded into the GC bases of DNA dendritic nanostructures, and its FL signal was effectively shielded. VEGF165 specifically bound to its aptamer to form G-quadruplex structures, which released Dox to produce a high FL signal (590 nm) for detection of VEGF165. This work developed a unique multifunctional DNA dendritic nanostructure fluorescence probe, and cleverly designed a new "On-off" switch strategy for sensitive trace detection of cancer markers.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Límite de Detección , ADN/genética , ADN/química , Hibridación de Ácido Nucleico , Sondas de ADN/genética , Técnicas de Amplificación de Ácido Nucleico , Aptámeros de Nucleótidos/química , Colorantes Fluorescentes/química
8.
Biosens Bioelectron ; 255: 116258, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555769

RESUMEN

In this work, a spatial-potential resolved bipolar electrode electrochemiluminescence (BPE-ECL) biosensor based on polarity conversion strategy and CuHCF electrocatalyst was constructed for dual-mode detection of miRNA-122 and carcinoembryonic antigen (CEA). ECL technology was firstly used to systematically study the polarity conversion of BPE. It was found that changing the polarity of the driving voltage would cause the polarity change of BPE, and led to the change of the luminescent position of Ru(bpy)32+. As a "proof-of-concept application", we developed a shielded dual-channel BPE-ECL biosensor for dual-mode detection of miRNA-122 and CEA. In order to further improve the detection sensitivity, a non-precious metal electrocatalyst CuHCF with outstanding electrocatalytic reduction activity of H2O2 was firstly introduced to the BPE-ECL biosensor for signal amplification, which could generate high faradaic current under the excitation of negative potential. Based on the charge neutrality principle of BPE, the enhancement of the faradaic current resulted in the ECL signal amplification of Ru(bpy)32+. The targets in the sensing grooves caused the introduction or fall off of CuHCF, which led to the ECL signal change of Ru(bpy)32+ in the signal grooves, and realized the dual-mode detection of miRNA-122 and CEA. This work provided a deeper understanding of the polarity change of BPE. Furthermore, the introduction of non-precious metal electrocatalyst had broadened the application range of BPE-ECL sensors.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Antígeno Carcinoembrionario , Peróxido de Hidrógeno , Mediciones Luminiscentes/métodos , Técnicas Biosensibles/métodos , Electrodos , Técnicas Electroquímicas
9.
Food Chem ; 444: 138665, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38335689

RESUMEN

We designed a multi-modal biosensing platform for versatile detection of penicillin based on a unique Ag-ZnIn2S4@Ag-Pt signal probe-sensitized UiO-66 metal-organic framework. Firstly, a large number of Ag-ZnIn2S4 quantum dots (AZIS QDs) were attached to Ag-Pt NPs, preparing a new multi-signal probe AZIS QDs@Ag-Pt NPs with excellent photoelectrochemistry (PEC), electrochemiluminescence (ECL), and fluorescence (FL) signals. Moreover, the AZIS QDs@Ag-Pt NPs signal probe can well match the energy level of UiO-66 metal-organic framework (MOF) with good photoelectric property, which can reverse the PEC current of UiO-66 to reduce false positives in detection. When penicillin was present, it bound to its aptamer to release the multifunctional signal probes, which can generate PEC, ECL, and PL signals, thus realizing ultrasensitive detection of penicillin by multi-signals. This work creates a novel three-signal QDs probe, which makes a great contribution to multi-mode photoelectric sensing analysis. The LOD of this work (3.48 fg·mL-1) was much lower than the MRLs (Maximum Residue Levels) established by the EU (4 ng·mL-1). The newly developed multi-mode biosensor has good practical application values in various biological detection, food assay, and early disease diagnosis.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Estructuras Metalorgánicas , Ácidos Ftálicos , Puntos Cuánticos , Penicilinas , Mediciones Luminiscentes , Fotometría , Puntos Cuánticos/química , Nanopartículas del Metal/química , Técnicas Electroquímicas , Límite de Detección
10.
Talanta ; 271: 125668, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38237282

RESUMEN

In this work, an electrochemiluminescence (ECL) biosensor based on dual ECL quenching effects of silver nanoclusters (Ag NCs) and multiple cycling amplification was designed to achieve ultrasensitive detection of ATP. The specific recognition of target ATP to aptamer initiated multiple cycling amplification, and a small amount of target was converted into a large number of DNA product chains (S1) by amplification. After S1 opened hairpin DNA 2 (HP2), Ag NCs approached the surface of CdS quantum dots (QDs) modified-electrode by complementary DNA, resulting in a significant decrease of ECL intensity from CdS QDs. The quenching principle is as follows. Firstly, the absorption spectrum of Ag NCs overlaps well with the ECL emission spectrum of CdS QDs, leading to effective ECL resonance energy transfer (ECL-RET); Secondly, Ag NCs could catalyze electrochemical reduction of K2S2O8, leading to consumption of ECL co-reactant and reducing ECL of QDs. The double-ECL quenching achieved ultrasensitive biosensing detection of ATP with a wide range from 1 aM to 1 pM. This present work reported new principle of double-quenching QDs ECL by Ag NCs, and developed a novel ECL biosensor by combining with multiple cycle amplification technique, which has great contribution to the development of QDs ECL and biosensing applications.


Asunto(s)
Técnicas Biosensibles , Compuestos de Cadmio , Plata , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , ADN/genética , Técnicas Biosensibles/métodos , Adenosina Trifosfato
11.
Biosens Bioelectron ; 241: 115704, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37748401

RESUMEN

Herein, a novel multifunctional photoelectrochemical (PEC) biosensor based on AgInS2 (AIS)/ZnS quantum dots (QDs) sensitized-WSe2 nanoflowers and DNA nanostructure signal probe was designed to achieve ultra-sensitive "On-Off" detection of human tumor necrosis factor α (TNF-α) and methylase Dam MTase (MTase). AIS/ZnS QDs as an excellent photosensitive material was found to match WSe2 in energy level for the first time, and the photocurrent signal after sensitization was 65 times that of WSe2 nanoflowers and 17.9 times that of AIS/ZnS QDs. Moreover, abundant AIS/ZnS QDs were loaded on the TiO2 nanoparticles with good conductivity by DNA to fabricate a multifunctional probe, which can not only amplify signal but also specifically recognize target. When target TNF-α was present, the AIS/ZnS QDs signal probe was attached to the WSe2 nanoflowers-modified electrode through binding to aptamer, and the amplified PEC signal was generated for "on" assay of TNF-α. Furthermore, Dam MTase as second target induced methylation of hairpin HDam, so it is cleaved by the endonuclease DpnI, resulting in the shedding of AIS/ZnS QDs signal probe for signal "off" detection of MTase. This work opened a new photosensitized probe and developed a promising PEC biosensor for dual-targets assay. By programming the DNA nanostructure, the biosensor can detect versatile targets in a simple and sensitive method, which has good practical application value in human serum.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Puntos Cuánticos , Humanos , Factor de Necrosis Tumoral alfa , Técnicas Electroquímicas , Puntos Cuánticos/química , Técnicas Biosensibles/métodos , Nanoestructuras/química , ADN/química , Sondas de ADN
12.
Analyst ; 148(18): 4456-4462, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37560929

RESUMEN

Herein, a multifunctional electrochemiluminescence (ECL) and photoelectrochemical (PEC) biosensor based on exchange of Ag+ with CdTe QDs was developed for dual-mode detection of thrombin. First, CdTe QDs assembled on an electrode displayed superior ECL and PEC signals. At the same time, C-rich hairpin (HP) DNA linked to silicon spheres loaded a large amount of Ag+, and the specific binding of thrombin to an aptamer led to the release of DNA P; then, DNA P interacted with HP DNA to produce numerous Ag+ ions by an enzyme-digestion amplification reaction. Ag+ underwent ion exchange with CdTe QDs to generate AgTe/CdTe QDs, resulting in much reversed PEC and changed ECL signals for dual-mode detection of thrombin. This work takes advantage of outstanding multi-signals of QDs coupled with convenient ion exchange to achieve multi-mode detection of the target, avoiding false positive or false negative signals generated in the traditional detection process, and thus can be used for the rapid detection of various biomolecules in actual samples.


Asunto(s)
Técnicas Biosensibles , Compuestos de Cadmio , Puntos Cuánticos , Puntos Cuánticos/química , Trombina , Compuestos de Cadmio/química , Intercambio Iónico , Telurio/química , ADN/química , Mediciones Luminiscentes/métodos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Límite de Detección
13.
Analyst ; 148(19): 4844-4849, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37622335

RESUMEN

This work proposes a new enzyme-free electrochemiluminescence (ECL) sensing platform based on a novel DNA-quantum dot (QD) nanostructure and hybridization chain reaction (HCR) amplification for the trace detection of Cd2+. First, the Cd2+ aptamer triggers the HCR amplification circuit, so abundant biotin-labeled DNAs are introduced to the electrode, and then biotin as a linker specifically captures a large number of streptavidin (SA)-CdS QD complexes, showing very high ECL signals. After the present Cd2+ binds to its aptamer on the electrode, it causes the linear DNA structure loaded with a large number of QDs to break away from the electrode, resulting in a significantly decreased ECL response. This method combines the HCR-amplified DNA structure-QD signal with the specificity of the biotin-avidin reaction, enabling the rapid detection of Cd2+ in complex water. Therefore, this sensor provides a novel and competitive strategy for detecting heavy metal ions in actual samples, which extends its application to practical settings, such as environmental monitoring and biomedical diagnostics.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Puntos Cuánticos , Puntos Cuánticos/química , Biotina/química , Aptámeros de Nucleótidos/química , Cadmio , Técnicas Biosensibles/métodos , ADN/genética , Mediciones Luminiscentes/métodos , Oro/química , Técnicas Electroquímicas
14.
Biosens Bioelectron ; 232: 115315, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37068419

RESUMEN

In this work, a unique FeMoOv nanozyme-bipolar electrode (NM-BPE) electrochemiluminescence (ECL) biosensing and imaging platform was proposed for the first time to realize sensitive detection of target hydrogen peroxide (H2O2) and prostate specific antigen (PSA). Considering the advantage that the cathode and anode poles of the bipolar electrode (BPE) can be modified respectively, this work was carried out using anode equipped with ECL reagent bipyridine ruthenium (Ru(bpy)32+), and cathode equipped with the Fe-doped molybdenum oxide/Au nanoparticles (FeMoOv/AuNPs) with excellent peroxidase (POD) and catalase (CAT)-like activity. Because FeMoOv/AuNPs show efficient enzyme catalysis effect and can greatly promote the decomposition of H2O2, thus the electron transfer rate in the NM-BPE system would be much accelerated to enhance the ECL signal of Ru(bpy)32+. Based on this principle, this work not only realized sensitive detection of H2O2, but also ingeniously designed an sandwich immunosensor using FeMoOv/AuNPs as recognition probe to mediate the ECL response on the anode, achieving highly sensitive detection of PSA. Furthermore, a unique mobile phone ECL imaging system was developed for assay of PSA at different concentrations, which opened a new portable imaging sensing device for bioassays. This work was the first time to combine nanozymes with bipolar electrodes for ECL analysis and imaging, which not only broadened the applications of nanozymes, but also pioneered the new joint ECL research technique of bipolar electrode and ECL imaging in bioassays, showing great application prospect for multiple detection of proteins, nucleic acids and cancer cells.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Humanos , Masculino , Antígeno Prostático Específico , Peróxido de Hidrógeno , Mediciones Luminiscentes/métodos , Oro , Técnicas Biosensibles/métodos , Inmunoensayo , Electrodos , Técnicas Electroquímicas/métodos
15.
Anal Chem ; 95(17): 7053-7061, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37080908

RESUMEN

False positives and negatives in bioanalytical assays remain a persistent problem. Herein, a multifunctional photoelectrochemical (PEC) biosensor based on ZnIn2S4 (ZIS)/ZnS quantum dots (QDs)@Au-Ag-reversed photocurrent of Cu-metal-organic framework (MOF) coupled with CRISPR/Cas-12a-shearing was innovatively developed for assay of dual targets. First, Cu-MOF as a good PEC material shows cathodic photocurrent. Then, numerous ZIS/ZnS QDs were assembled to the Au-Ag nanoparticles (NPs) to prepare a stable and highly amplified signal probe, which can just match the energy level of Cu-MOFs and realized the polarity-reversed photocurrent of Cu-MOF for the first time. As the empty-core nanostructure of Au-Ag NPs has a high specific surface area and low material density, the bimetallic nanocrystal can much increase the reaction rate and improve the redox efficiency. When target CEA-produced cDNA opened the hairpin DNA (HP1 DNA) on the electrode, the ZIS/ZnS QDs@Au-Ag signal probe was conjugated to the electrode via DNA hybridization, achieving a significantly reversed PEC current for CEA detection. Moreover, the specific binding of kanamycin/aptamer generated the acDNA (activator), which can activate the trans-cleavage activity of the CRISPR-CAS12a system on ssDNA, so the signal probe was sheared and caused the obvious decrease of PEC signal for kanamycin detection. The newly developed ZIS/ZnS QDs@Au-Ag NPs displayed excellent PEC properties and reversed photocurrent to MOF and were combined with the unique CRISPR-Cas12a system to achieve sensitive detection of dual targets, which can open a new polarity-reversed PEC sensing platform for rapid and accurate analysis of multiple targets and can effectively avoid false positives results in clinical testing.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Estructuras Metalorgánicas , Puntos Cuánticos , Técnicas Biosensibles/métodos , Sistemas CRISPR-Cas , ADN , Técnicas Electroquímicas/métodos , Oro/química , Límite de Detección , Nanopartículas del Metal/química , Puntos Cuánticos/química , Plata/química , Cobre/química
16.
Anal Chim Acta ; 1251: 341003, 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-36925292

RESUMEN

The development of DNA nanomachines provides a new strategy for the detection of tumor markers. In this work, an intelligent three-dimensional (3D) DNA walking machine with polynucleotide kinase (PNK) activator was designed, which was coupled with unique nanomachine formed by DNA nanowire cascade amplification reaction for versatile fluorescence detection of T4 PNK activity and messenger RNA (mRNA). When PNK exists, the free DNA walker was formed by hydrolysis cleavage of exonuclease, then the fluorophore-labeled report probe on the Au nanoparticles (NPs) was sheared during cycling cleavage reaction, thus the fluorescence signal was recovered for detection of PNK. Moreover, the DNA nanowires were produced by rolling ring amplification, then target mRNA sequentially initiated interval hybridization of hairpin probes through DNA nanowire, thus realizing DNA cascade reaction (DCR) with high "on" signal of DNA nanomachine for mRNA assay. This developed novel fluorescence nanomachine reported a new assay method with promising application for versatile targets and showed great potential for molecular-target therapies, and clinic diagnostics.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Polinucleótido 5'-Hidroxil-Quinasa , Oro , Bacteriófago T4/genética , ADN/genética , Técnicas Biosensibles/métodos
17.
Food Chem ; 413: 135627, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36773365

RESUMEN

Functionalized metal organometallic frameworks (MOFs) offer unique advantages in the field of sensing due to their versatility and tunable optical properties. In this work, a new dual-potential electrochemiluminescence (ECL) molecularly imprinted sensor using single Zn-MOF signal probe was designed for double detection of trace chloramphenicol (CAP). As dual-signal ECL emitters, Zn-MOFs were firstly modified on the electrode, showing excellent ECL emission in both cathodic and anodic potential. Then the molecularly imprinted polymer (MIP) was electrochemically prepared using o-phenylenediamine (O-PD) and CAP as a template molecule on the Zn-MOFs/electrode. After CAP as a molecular recognition element was eluted and removed from the Zn-MOFs/MIP/electrode, a new ECL sensor was developed for CAP detection by re-adsorption of CAP on the MIP, resulting in "off" of ECL signal. Compared with the conventional single-signal luminophores, Zn-MOFs show more stable and excellent dual ECL signals, which greatly improve the discriminability and accuracy of CAP trace detection. Under the optimal conditions, the linear range of CAP detection was 1 × 10-14-1 × 10-8 M, and the minimum limits of detection (LOD) were 2.1 fM and 2.5 fM for cathode and anode ECL, respectively. This is the first time that Zn-MOFs are used as dual-ECL emitters for molecular sensing systems, and the proposed dual-channel sensing system is flexibly applicable to sensitive detection of other antibiotics, which has broad practical application in food safety.


Asunto(s)
Técnicas Biosensibles , Impresión Molecular , Impresión Molecular/métodos , Cloranfenicol , Mediciones Luminiscentes/métodos , Límite de Detección , Zinc , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
18.
Biosens Bioelectron ; 217: 114694, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36113299

RESUMEN

In this work, a new photoelectrochemical (PEC) biosensing platform based on an ordered two-dimensional (2D) ultrathin covalent organic framework (COF) film and AgInS2 quantum dots (QDs) has been developed to enable dual-target detection of HIV and CEA. The porous COF film was firstly in situ generated on ITO, displaying super-stable and intense photocurrent with excellent repeatability. Moreover, an effective PEC quenching probe was specifically designed by loading large number of AgInS2 QDs on Au nanoparticles (NPs). After target HIV-induced cyclic amplification process to generate abundant DNA S0, the Au NPs-AgInS2 QDs probe was binded to the COF film through DNA hybridization, enabling PEC signal of the COF film to turn "off" for ultra-sensitive detection of HIV. Furthermore, when CEA as the second target specifically binded to its aptamer, the Au NPs-AgInS2 QDs quenching probe was released, achieving PEC signal "on" of the T-DA COF film for ultra-sensitive detection of CEA. This work opened a unique 2-D COF film-based PEC biosensing platform with excellent signal for rapid detection of dual targets, which can effectively avoid false positives and negatives and shows promising application for early prevention and detection of cancer diseases.


Asunto(s)
Técnicas Biosensibles , Infecciones por VIH , Nanopartículas del Metal , Estructuras Metalorgánicas , Puntos Cuánticos , ADN , Técnicas Electroquímicas/métodos , Oro , Infecciones por VIH/diagnóstico , Humanos , Límite de Detección
19.
Biosens Bioelectron ; 217: 114699, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36113302

RESUMEN

Rapid parallel detection of multi-targets has always been an exploration aim in electrochemiluminescence (ECL) assays. Herein, a multifunctional nanocomposite of Zr metal-organic frameworks (MOFs) @PEI@AuAg nanoclusters (NCs) with intense and stable dual-wavelength ECL was synthesized for the first time, and used to construct a new ECL biosensor for rapid simultaneous detection of dual targets. Notably, the novel ECL emitter Zr MOFs with high-performance was not only integrated with a co-reactant polyethyleneimine (PEI) to form a unique intramolecular self-enhancing structure, but also loaded a large number of another ECL emitter AuAg NCs, furthermore, AuAg NCs with superior electron transfer property can much enhance the electrical conductivity of the composites, thus achieving the goal of "killing three birds with one stone". Moreover, a unique stable and rigid three-dimensional DNA tetrahedron (TDN) structure was connected with two quenching probes BHQ1 and BHQ3 and immobilized on the composites-modified electrode, so ECL emission of the nanocomposites at two wavelengths of 535 nm and 644 nm were both quenched by resonance energy transfer (RET). In the presence of target miRNAs, the efficient DNA cycling double-amplification processes were performed by using exonuclease (T7 Exo) combined with DNA Walker, thus both quenching groups were separated to restore the ECL at two wavelengths, achieving simultaneous and rapid ECL detection of two miRNAs. Therefore, this present work not only opens a unique nanocomplex with dual wavelength ECL and self-enhancing performance, but also develops a highly sensitive ECL biosensor with promising value for rapid multi-target analysis in clinical fields.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , MicroARNs , Nanocompuestos , Técnicas Biosensibles/métodos , ADN/química , Técnicas Electroquímicas/métodos , Exonucleasas , Límite de Detección , Mediciones Luminiscentes/métodos , Estructuras Metalorgánicas/química , MicroARNs/análisis , Polietileneimina
20.
Anal Chim Acta ; 1222: 340190, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35934426

RESUMEN

A novel fluorescence biosensor based on hyperbranched rolling circle amplication (HRCA) and multi-site strand displacement amplification (SDA) strategy was constructed to realize super-sensitive detection of miRNA-21. The target miRNA-21 was specifically used to trigger HRCA reaction and generated abundant DNA sequences with different lengths. These sequences could initiate the SDA reaction with hairpin HP1 and HP2 to form the fluorescence signal double-stranded bodies (FSDB), and produced the fluorescence resonance energy transfer (FRET) for target assay. The circle template, reverse primer, hairpin HP1 and HP2 were skillfully designed to much improve the assay selectivity. This FRET signal ratio-based strategy not only avoided the false positive signal produced by traditional detection methods, but also minimized the influence of system fluctuation. So the detection limit of the target could reach fM level. In addition, this method could also be applied to the detection of other miRNAs, proteins and biomolecules, and had great potential in biomedical research, environmental detection and clinical diagnostic applications.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Técnicas Biosensibles/métodos , Proteínas Cromosómicas no Histona , Transferencia Resonante de Energía de Fluorescencia , Límite de Detección , MicroARNs/genética , Técnicas de Amplificación de Ácido Nucleico/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA