Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Adv Mater ; 36(25): e2401288, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558119

RESUMEN

Designing electrocatalysts with high activity and durability for multistep reduction and oxidation reactions is challenging. High-entropy alloys (HEAs) are intriguing due to their tunable geometric and electronic structure through entropy effects. However, understanding the origin of their exceptional performance and identifying active centers is hindered by the diverse microenvironment in HEAs. Herein, NiFeCoCuRu HEAs designed with an average diameter of 2.17 nm, featuring different adsorption capacities for various reactants and intermediates in Li-mediated CO2 redox reactions, are introduced. The electronegativity-dependent nature of NiFeCoCuRu HEAs induces significant charge redistribution, shifting the d-band center closer to Fermi level and forming highly active clusters of Ru, Co, and Ni for Li-based compounds adsorptions. This lowers energy barriers and simultaneously stabilizes *LiCO2 and LiCO3+CO intermediates, enhancing the efficiency of both CO2 reduction and Li2CO3 decomposition over extended periods. This work provides insights into specific active site interactions with intermediates, highlighting the potential of HEAs as promising catalysts for intricate CO2 redox reactions.

2.
Angew Chem Int Ed Engl ; 63(14): e202319091, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308095

RESUMEN

Aqueous zinc-ion batteries are regarded as promising and efficient energy storage systems owing to remarkable safety and satisfactory capacity. Nevertheless, the instability of zinc metal anodes, characterized by issues such as dendrite growth and parasitic side reactions, poses a significant barrier to widespread applications. Herein, we address this challenge by designing a localized conjugated structure comprising a cyclic polyacrylonitrile polymer (CPANZ), induced by a Zn2+-based Lewis acid (zinc trifluoromethylsulfonate) at a temperature of 120 °C. The CPANZ layer on the Zn anode, enriched with appropriate pyridine nitrogen-rich groups (conjugated cyclic -C=N-), exhibits a notable affinity for Zn2+ with ample deposition sites. This zincophilic skeleton not only serves as a protective layer to guide the deposition of Zn2+ but also functions as proton channel blocker, regulating the proton flux to mitigate the hydrogen evolution. Additionally, the strong adhesion strength of the CPANZ layer guarantees its sustained protection to the Zn metal during long-term cycling. As a result, the modified zinc electrode demonstrates long cycle life and high durability in both half-cell and pouch cells. These findings present a feasible approach to designing high performance aqueous anodes by introducing a localized conjugated layer.

3.
ChemSusChem ; 17(12): e202301874, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38323505

RESUMEN

In the dynamic realm of energy conversion, the demand for efficient electrocatalysis has surged due to the urgent need to seamlessly integrate renewable energy. Traditional electrocatalyst preparation faces challenges like poor controllability, elevated costs, and stringent operational conditions. The introduction of microwave strategies represents a transformative shift, offering rapid response, high-temperature energy, and superior controllability. Notably, non-liquid-phase advanced microwave technology holds promise for introducing novel models and discoveries compared to traditional liquid-phase microwave methods. This review examines the nuanced applications of microwave technology in electrocatalyst structural engineering, emphasizing its pivotal role in the energy paradigm and addressing challenges in conventional methods. The ensuing discussion explores the profound impact of advanced microwave strategies on electrocatalyst structural engineering, highlighting discernible advantages in optimizing performance. Various applications of advanced microwave techniques in electrocatalysis are comprehensively discussed, providing a forward-looking perspective on their untapped potential to propel transformative strides in renewable energy research. It provides a forward-looking perspective, delving into the untapped potential of microwaves to propel transformative strides in renewable energy research.

4.
Small ; 20(27): e2310801, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38308086

RESUMEN

Lithium-sulfur (Li-S) batteries show extraordinary promise as a next-generation battery technology due to their high theoretical energy density and the cost efficiency of sulfur. However, the sluggish reaction kinetics, uncontrolled growth of lithium sulfide (Li2S), and substantial Li2S oxidation barrier cause low sulfur utilization and limited cycle life. Moreover, these drawbacks get exacerbated at high current densities and high sulfur loadings. Here, a heterostructured WOx/W2C nanocatalyst synthesized via ultrafast Joule heating is reported, and the resulting heterointerfaces contribute to enhance electrocatalytic activity for Li2S oxidation, as well as controlled Li2S deposition. The densely distributed nanoparticles provide abundant binding sites for uniform deposition of Li2S. The continuous heterointerfaces favor efficient adsorption and promote charge transfer, thereby reducing the activation barrier for the delithiation of Li2S. These attributes enable Li-S cells to deliver high-rate performance and high areal capacity. This study provides insights into efficient catalyst design for Li2S oxidation under practical cell conditions.

5.
Chem Soc Rev ; 53(4): 2022-2055, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38204405

RESUMEN

Beyond conventional electrocatalyst engineering, recent studies have unveiled the effectiveness of manipulating the local reaction environment in enhancing the performance of electrocatalytic reactions. The general principles and strategies of local environmental engineering for different electrocatalytic processes have been extensively investigated. This review provides a critical appraisal of the recent advancements in local reaction environment engineering, aiming to comprehensively assess this emerging field. It presents the interactions among surface structure, ions distribution and local electric field in relation to the local reaction environment. Useful protocols such as the interfacial reactant concentration, mass transport rate, adsorption/desorption behaviors, and binding energy are in-depth discussed toward modifying the local reaction environment. Meanwhile, electrode physical structures and reaction cell configurations are viable optimization methods in engineering local reaction environments. In combination with operando investigation techniques, we conclude that rational modifications of the local reaction environment can significantly enhance various electrocatalytic processes by optimizing the thermodynamic and kinetic properties of the reaction interface. We also outline future research directions to attain a comprehensive understanding and effective modulation of the local reaction environment.

6.
Adv Mater ; 36(14): e2307913, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37756435

RESUMEN

Hydrogenation reactions play a critical role in the synthesis of value-added products within the chemical industry. Electrocatalytic hydrogenation (ECH) using water as the hydrogen source has emerged as an alternative to conventional thermocatalytic processes for sustainable and decentralized chemical synthesis under mild conditions. Among the various ECH catalysts, copper-based (Cu-based) nanomaterials are promising candidates due to their earth-abundance, unique electronic structure, versatility, and high activity/selectivity. Herein, recent advances in the application of Cu-based catalysts in ECH reactions for the upgrading of valuable chemicals are systematically analyzed. The unique properties of Cu-based catalysts in ECH are initially introduced, followed by design strategies to enhance their activity and selectivity. Then, typical ECH reactions on Cu-based catalysts are presented in detail, including carbon dioxide reduction for multicarbon generation, alkyne-to-alkene conversion, selective aldehyde conversion, ammonia production from nitrogen-containing substances, and amine production from organic nitrogen compounds. In these catalysts, the role of catalyst composition and nanostructures toward different products is focused. The co-hydrogenation of two substrates (e.g., CO2 and NOx n, SO3 2-, etc.) via C─N, C─S, and C─C cross-coupling reactions are also highlighted. Finally, the critical issues and future perspectives of Cu-catalyzed ECH are proposed to accelerate the rational development of next-generation catalysts.

7.
Sci Adv ; 9(42): eadi7755, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37851797

RESUMEN

The limited availability of freshwater in renewable energy-rich areas has led to the exploration of seawater electrolysis for green hydrogen production. However, the complex composition of seawater presents substantial challenges such as electrode corrosion and electrolyzer failure, calling into question the technological and economic feasibility of direct seawater splitting. Despite many efforts, a comprehensive overview and analysis of seawater electrolysis, including electrochemical fundamentals, materials, and technologies of recent breakthroughs, is still lacking. In this review, we systematically examine recent advances in electrocatalytic seawater splitting and critically evaluate the obstacles to optimizing water supply, materials, and devices for stable hydrogen production from seawater. We demonstrate that robust materials and innovative technologies, especially selective catalysts and high-performance devices, are critical for efficient seawater electrolysis. We then outline and discuss future directions that could advance the techno-economic feasibility of this emerging field, providing a roadmap toward the design and commercialization of materials that can enable efficient, cost-effective, and sustainable seawater electrolysis.

8.
Angew Chem Int Ed Engl ; 62(46): e202311674, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37711095

RESUMEN

A highly selective and durable oxygen evolution reaction (OER) electrocatalyst is the bottleneck for direct seawater splitting because of side reactions primarily caused by chloride ions (Cl- ). Most studies about OER catalysts in seawater focus on the repulsion of the Cl- to reduce its negative effects. Herein, we demonstrate that the absorption of Cl- on the specific site of a popular OER electrocatalyst, nickel-iron layered double hydroxide (NiFe LDH), does not have a significant negative impact; rather, it is beneficial for its activity and stability enhancement in natural seawater. A set of in situ characterization techniques reveals that the adsorption of Cl- on the desired Fe site suppresses Fe leaching, and creates more OER-active Ni sites, improving the catalyst's long-term stability and activity simultaneously. Therefore, we achieve direct alkaline seawater electrolysis for the very first time on a commercial-scale alkaline electrolyser (AE, 120 cm2 electrode area) using the NiFe LDH anode. The new alkaline seawater electrolyser exhibits a reduction in electricity consumption by 20.7 % compared to the alkaline purified water-based AE using commercial Ni catalyst, achieving excellent durability for 100 h at 200 mA cm-2 .

9.
Sci Adv ; 9(25): eadh1718, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37352343

RESUMEN

The trade-off between activity and stability of oxygen evolution reaction (OER) catalysts in proton exchange membrane water electrolyzer (PEMWE) is challenging. Crystalline IrO2 displays good stability but exhibits poor activity; amorphous IrOx exhibits outstanding activity while sacrificing stability. Here, we combine the advantages of these two materials via a lattice water-incorporated iridium oxide (IrOx·nH2O) that has short-range ordered structure of hollandite-like framework. We confirm that IrOx·nH2O exhibits boosted activity and ultrahigh stability of >5700 hours (~8 months) with a record-high stability number of 1.9 × 107 noxygen nIr-1. We evidence that lattice water is active oxygen species in sustainable and rapid oxygen exchange. The lattice water-assisted modified OER mechanism contributes to improved activity and concurrent stability with no apparent structural degradation, which is different to the conventional adsorbate evolution mechanism and lattice oxygen mechanism. We demonstrate that a high-performance PEMWE with IrOx·nH2O as anode electrocatalyst delivers a cell voltage of 1.77 V at 1 A cm-2 for 600 hours (60°C).


Asunto(s)
Oxígeno , Protones , Especies Reactivas de Oxígeno , Electrodos , Agua
10.
Nat Commun ; 14(1): 2843, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202405

RESUMEN

Acidic CO2-to-HCOOH electrolysis represents a sustainable route for value-added CO2 transformations. However, competing hydrogen evolution reaction (HER) in acid remains a great challenge for selective CO2-to-HCOOH production, especially in industrial-level current densities. Main group metal sulfides derived S-doped metals have demonstrated enhanced CO2-to-HCOOH selectivity in alkaline and neutral media by suppressing HER and tuning CO2 reduction intermediates. Yet stabilizing these derived sulfur dopants on metal surfaces at large reductive potentials for industrial-level HCOOH production is still challenging in acidic medium. Herein, we report a phase-engineered tin sulfide pre-catalyst (π-SnS) with uniform rhombic dodecahedron structure that can derive metallic Sn catalyst with stabilized sulfur dopants for selective acidic CO2-to-HCOOH electrolysis at industrial-level current densities. In situ characterizations and theoretical calculations reveal the π-SnS has stronger intrinsic Sn-S binding strength than the conventional phase, facilitating the stabilization of residual sulfur species in the Sn subsurface. These dopants effectively modulate the CO2RR intermediates coverage in acidic medium by enhancing *OCHO intermediate adsorption and weakening *H binding. As a result, the derived catalyst (Sn(S)-H) demonstrates significantly high Faradaic efficiency (92.15 %) and carbon efficiency (36.43 %) to HCOOH at industrial current densities (up to -1 A cm-2) in acidic medium.

11.
Nat Commun ; 14(1): 354, 2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36681684

RESUMEN

Heteroatom-doping is a practical means to boost RuO2 for acidic oxygen evolution reaction (OER). However, a major drawback is conventional dopants have static electron redistribution. Here, we report that Re dopants in Re0.06Ru0.94O2 undergo a dynamic electron accepting-donating that adaptively boosts activity and stability, which is different from conventional dopants with static dopant electron redistribution. We show Re dopants during OER, (1) accept electrons at the on-site potential to activate Ru site, and (2) donate electrons back at large overpotential and prevent Ru dissolution. We confirm via in situ characterizations and first-principle computation that the dynamic electron-interaction between Re and Ru facilitates the adsorbate evolution mechanism and lowers adsorption energies for oxygen intermediates to boost activity and stability of Re0.06Ru0.94O2. We demonstrate a high mass activity of 500 A gcata.-1 (7811 A gRe-Ru-1) and a high stability number of S-number = 4.0 × 106 noxygen nRu-1 to outperform most electrocatalysts. We conclude that dynamic dopants can be used to boost activity and stability of active sites and therefore guide the design of adaptive electrocatalysts for clean energy conversions.


Asunto(s)
Renio , Rutenio , Adsorción , Óxidos , Oxígeno
12.
Nanomaterials (Basel) ; 12(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35889644

RESUMEN

Layered double hydroxide (LDH) is widely used in electrocatalytic water splitting due to its good structural tunability, high intrinsic activity, and mild synthesis conditions, especially for flexible fiber-based catalysts. However, the poor stability of the interface between LDH and flexible carbon textile prepared by hydrothermal and electrodeposition methods greatly affects its active area and cyclic stability during deformation. Here, we report a salt-template-assisted method for the growth of two-dimensional (2D) amorphous ternary LDH based on dip-rolling technology. The robust and high-dimensional structure constructed by salt-template and fiber could achieve a carbon textile-based water splitting catalyst with high loading, strong catalytic activity, and good stability. The prepared 2D NiFeCo-LDH/CF electrode showed overpotentials of 220 mV and 151 mV in oxygen evolution and hydrogen evolution reactions, respectively, and simultaneously had no significant performance decrease after 100 consecutive bendings. This work provides a new strategy for efficiently designing robust, high-performance LDH on flexible fibers, which may have great potential in commercial applications.

13.
Angew Chem Int Ed Engl ; 61(27): e202203850, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35437873

RESUMEN

Electrocatalysts for high-rate hydrogen evolution reaction (HER) are crucial to clean fuel production. Nitrogen-rich 2D transition metal nitride, designated "nitridene", has shown promising HER performance because of its unique physical/chemical properties. However, its synthesis is hindered by the sluggish growth kinetics. Here for the first time using a catalytic molten-salt method, we facilely synthesized a V-Mo bimetallic nitridene solid solution, V0.2 Mo0.8 N1.2 , with tunable electrocatalytic property. The molten-salt synthesis reduces the growth barrier of V0.2 Mo0.8 N1.2 and facilitates V dissolution via a monomer assembly, as confirmed by synchrotron spectroscopy and ex situ electron microscopy. Furthermore, by merging computational simulations, we confirm that the V doping leads to an optimized electronic structure for fast protons coupling to produce hydrogen. These findings offer a quantitative engineering strategy for developing analogues of MXenes for clean energy conversions.

14.
Nat Commun ; 12(1): 7195, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34893632

RESUMEN

Metal sulfides electrodeposition in sulfur cathodes mitigates the shuttle effect of polysulfides to achieve high Coulombic efficiency in secondary metal-sulfur batteries. However, fundamental understanding of metal sulfides electrodeposition and kinetics mechanism remains limited. Here using room-temperature sodium-sulfur cells as a model system, we report a Mo5N6 cathode material that enables efficient Na2S electrodeposition to achieve an initial discharge capacity of 512 mAh g-1 at a specific current of 1 675 mA g-1, and a final discharge capacity of 186 mAh g-1 after 10,000 cycles. Combined analyses from synchrotron-based spectroscopic characterizations, electrochemical kinetics measurements and density functional theory computations confirm that the high d-band position results in a low Na2S2 dissociation free energy for Mo5N6. This promotes Na2S electrodeposition, and thereby favours long-term cell cycling performance.

15.
Adv Mater ; 33(51): e2104341, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34605072

RESUMEN

The physicochemical properties of metal-organic frameworks (MOFs) significantly depend on composition, topology, and porosity, which can be tuned via synthesis. In addition to a classic direct synthesis, postsynthesis modulations of MOFs, including ion exchange, installation, and destruction, can significantly expand the application. Because of a limitation of the qualitative hard and soft acids and bases (HSAB) theory, posttreatment permits regulation of MOF structure by cleaving chemical bonds at the molecular level. Here, methods of coordination bond scission to tailor the structure are critically appraised and the application to energy storage and conversion is assessed. MOF structures synthesized by molecular-level coordination bond cleavage are described and the corresponding MOFs for electrocatalysis and renewable battery applications are evaluated. Significant emphasis is placed on various coordination bond cleavage to tune properties, including chemical groups, electronic structures, and morphologies. The review concludes with a critical perspective on practical application, together with challenges and future outlook for this emerging field.

16.
Adv Mater ; 33(13): e2007508, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33624901

RESUMEN

Electrocatalytic production of hydrogen from seawater provides a route to low-cost and clean energy conversion. However, the hydrogen evolution reaction (HER) using seawater is greatly hindered by the lack of active and stable catalysts. Herein, an unsaturated nickel surface nitride (Ni-SN@C) catalyst that is active and stable for the HER in alkaline seawater is prepared. It achieves a low overpotential of 23 mV at a current density of 10 mA cm-2 in alkaline seawater electrolyte, which is superior to Pt/C. Compared to conventional transition metal nitrides or metal/metal nitride heterostructures, the Ni-SN@C has no detectable bulk nickel nitride phase. Instead, unsaturated NiN bonding on the surface is present. In situ Raman measurements show that the Ni-SN@C performs like Pt with the ability to generate hydronium ions in a high-pH electrolyte. The catalyst operation is then demonstrated in a two-electrode electrolyzer system, coupling with hydrazine oxidation at the anode. Using this system, a cell voltage of only 0.7 V is required to achieve a current density of 1 A cm-2 .

17.
Adv Mater ; 31(32): e1902709, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31194268

RESUMEN

Electrochemical nitrogen reduction reaction (NRR) under ambient conditions provides an avenue to produce carbon-free hydrogen carriers. However, the selectivity and activity of NRR are still hindered by the sluggish reaction kinetics. Nitrogen Vacancies on transition metal nitrides are considered as one of the most ideal active sites for NRR by virtue of their unique vacancy properties such as appropriate adsorption energy to dinitrogen molecule. However, their catalytic performance is usually limited by the unstable feature. Herein, a new 2D layered W2 N3 nanosheet is prepared and the nitrogen vacancies are demonstrated to be active for electrochemical NRR with a steady ammonia production rate of 11.66 ± 0.98 µg h-1 mgcata -1 (3.80 ± 0.32 × 10-11 mol cm-2 s-1 ) and Faradaic efficiency of 11.67 ± 0.93% at -0.2 V versus reversible hydrogen electrode for 12 cycles (24 h). A series of ex situ synchrotron-based characterizations prove that the nitrogen vacancies on 2D W2 N3 are stable by virtue of the high valence state of tungsten atoms and 2D confinement effect. Density function theory calculations suggest that nitrogen vacancies on W2 N3 can provide an electron-deficient environment which not only facilitates nitrogen adsorption, but also lowers the thermodynamic limiting potential of NRR.

18.
ACS Nano ; 12(12): 12761-12769, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30495918

RESUMEN

Transition metal nitrides (TMNs) have great potential for energy-related electrocatalysis because of their inherent electronic properties. However, incorporating nitrogen into a transition metal lattice is thermodynamically unfavorable, and therefore most of the developed TMNs are deficient in nitrogen. Consequently, these TMNs exhibit poor structural stability and unsatisfactory performance for electrocatalytic applications. In this work, we design and synthesize an atomically thin nitrogen-rich nanosheets, Mo5N6, with the help of a Ni-inducing growth method. The as-prepared single-crystal electrocatalyst with abundant metal-nitrogen electroactive sites displays outstanding activity for the hydrogen evolution reaction (HER) in a wide range of electrolytes (pH 0-14). Further, the two-dimensional Mo5N6 nanosheets exhibit high HER activity and stability in natural seawater that are superior to other TMNs and even the Pt benchmark. By combining synchrotron-based spectroscopy and the calculations of electron density of state, we find that the enhanced properties of these nitrogen-rich Mo5N6 nanosheets originates from its Pt-like electronic structure and the high valence state of its Mo atoms.

19.
Angew Chem Int Ed Engl ; 57(51): 16703-16707, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30325094

RESUMEN

Lithium-sulfur batteries hold promise for next-generation batteries. A problem, however, is rapid capacity fading. Moreover, atomic-level understanding of the chemical interaction between sulfur host and polysulfides is poorly elucidated from a theoretical perspective. Here, a two-dimensional (2D) heterostructured MoN-VN is fabricated and investigated as a new model sulfur host. Theoretical calculations indicate that electronic structure of MoN can be tailored by incorporation of V. This leads to enhanced polysulfides adsorption. Additionally, in situ synchrotron X-ray diffraction and electrochemical measurements reveal effective regulation and utilization of the polysulfides in the MoN-VN. The MoN-VN-based lithium-sulfur batteries have a capacity of 708 mA h g-1 at 2 C and a capacity decay as low as 0.068 % per cycle during 500 cycles with sulfur loading of 3.0 mg cm-2 .

20.
Chem Rev ; 118(13): 6337-6408, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29552883

RESUMEN

Over the past few decades, the design and development of advanced electrocatalysts for efficient energy conversion technologies have been subjects of extensive study. With the discovery of graphene, two-dimensional (2D) nanomaterials have emerged as some of the most promising candidates for heterogeneous electrocatalysts due to their unique physical, chemical, and electronic properties. Here, we review 2D-nanomaterial-based electrocatalysts for selected electrocatalytic processes. We first discuss the unique advances in 2D electrocatalysts based on different compositions and functions followed by specific design principles. Following this overview, we discuss various 2D electrocatalysts for electrocatalytic processes involved in the water cycle, carbon cycle, and nitrogen cycle from their fundamental conception to their functional application. We place a significant emphasis on different engineering strategies for 2D nanomaterials and the influence these strategies have on intrinsic material performance, such as electronic properties and adsorption energetics. Finally, we feature the opportunities and challenges ahead for 2D nanomaterials as efficient electrocatalysts. By considering theoretical calculations, surface characterization, and electrochemical tests, we describe the fundamental relationships between electronic structure, adsorption energy, and apparent activity for a wide variety of 2D electrocatalysts with the goal of providing a better understanding of these emerging nanomaterials at the atomic level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA