Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
3.
Mol Cancer ; 21(1): 185, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163179

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy using brexucabtagene autoleucel (BA) induces remission in many patients with mantle cell lymphoma (MCL), and BA is the only CAR T-cell therapy approved by the FDA for MCL. However, development of relapses to BA is recognized with poor patient outcomes. Multiple CAR T-cell therapies have been approved for other lymphomas and the resistance mechanisms have been investigated. However, the mechanisms underlying BA relapse in MCL have not been investigated and whether any previously reported resistance mechanisms apply to BA-relapsed patients with MCL is unknown. METHODS: To interrogate BA resistance mechanisms in MCL, we performed single-cell RNA sequencing on 39 longitudinally collected samples from 15 BA-treated patients, and multiplex cytokine profiling on 80 serial samples from 20 patients. RESULTS: We demonstrate that after BA relapse, the proportion of T cells, especially cytotoxic T cells (CTLs), decreased among non-tumor cells, while the proportion of myeloid cells correspondingly increased. TIGIT, LAG3, and CD96 were the predominant checkpoint molecules expressed on exhausted T cells and CTLs; only TIGIT was significantly increased after relapse. CTLs expanded during remission, and then contracted during relapse with upregulated TIGIT expression. Tumor cells also acquired TIGIT expression after relapse, leading to the enhanced interaction of tumor cell TIGIT with monocyte CD155/PVR. In myeloid cells, post-relapse HLA-II expression was reduced relative to pretreatment and during remission. Myeloid-derived suppressor cells (MDSCs) were enriched after relapse with elevated expression of activation markers, including CLU (clusterin) and VCAN (versican). Extracellular chemokines (CCL4, CXCL9, CXCL13), soluble checkpoint inhibitors (sPD-L1, sTIM3, s4-1BB), and soluble receptors (sIL-2R, sTNFRII) were decreased during remission but elevated after relapse. CONCLUSIONS: Our data demonstrate that multiple tumor-intrinsic and -extrinsic factors are associated with T-cell suppression and BA relapse. Among these, TIGIT appears to be the central player given its elevated expression after BA relapse in not only CTLs but also MCL cells. The acquisition of TIGIT expression on tumor cells is MCL-specific and has not been reported in other CAR T-treated diseases. Together, our data suggest that co-targeting TIGIT may prevent CAR T relapses and thus promote long-term progression-free survival in MCL patients.


Asunto(s)
Linfoma de Células del Manto , Receptores Quiméricos de Antígenos , Adulto , Antígenos CD , Clusterina , Citocinas/metabolismo , Humanos , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/terapia , Recurrencia Local de Neoplasia , Receptores Inmunológicos/genética , Linfocitos T , Versicanos
4.
Front Neuroanat ; 16: 1057929, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686575

RESUMEN

Objectives: Retinal ischemia-reperfusion injury (RIRI) is the common pathological basis of many ophthalmic diseases in the later stages, and inflammation is the primary damage mechanism of RIRI. Our study aimed to assess whether electroacupuncture (EA) has a protective effect against RIRI and to elucidate its related mechanisms. Methods: A high-intraocular pressure (HIOP) model was used to simulate RIRI in Wistar rats. EA was applied to the EA1 group [Jingming (BL1) + Shuigou (GV26)] and the EA2 group [Jingming (BL1) + Hegu (LI4)] respectively for 30 min starting immediately after the onset of reperfusion and repeated (30 min/time) at 12 h and then every 24 h until days 7 after reperfusion. The pathological changes in the retina were observed by H and E staining after HIOP. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was utilized to observe retinal cell apoptosis. The mRNA expression of IL1-ß, TNF-α, IL-4, IL-10, δ-opioid receptor (DOR), brain-derived neurotrophic factor (BDNF), and tropomyosin-related kinase B (TrkB) in the retina was measured by quantitative real-time PCR. Results: HIOP caused structural disorders of the retina, decreased RGCs, and increased retinal cell apoptosis. At 1 and 3 days of RIRI, retinal apoptotic cells in the EA group were significantly reduced, while there was no distinct difference in the EA group compared with the HIOP group at 7 days of RIRI. Compared with that in the HIOP group, the expression of anti-inflammatory factors, DOR and TrkB was increased, and the expression of pro-inflammatory factors was decreased in the EA group. In contrast, HIOP had no appreciable effect on BDNF expression. Conclusion: EA at Jingming (BL1) and Shuigou (GV26) or at Jingming (BL1) and Hegu (LI4) may inhibit RIRI induced inflammation through activating the DOR-BDNF/TrkB pathway to protect the retina, especially the pair of Jingming (BL1) and Shuigou (GV26) has better inhibitory effects on inflammation.

5.
Inquiry ; 57: 46958020953997, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32880500

RESUMEN

Unplanned surgery cancellation (USC) was an important quality management issue in the course of medical care for surgical patients, which caused inappropriate use of hospital resources and had negative impacts on quality and safety. This study used Lean Six Sigma to reduce the incidence of USC. Following the Lean Six Sigma DMAIC (Define, Measure, Analyze, Improve, and Control) process, the main factors influencing the USC were identified, such as the time of informing patient admission, the time of submitting operation notice, and the management of test report follow-up. A series of measures were implemented including improving the health education content of virtual bed patients, standardizing the way of communication between the Admission Management Center and the patients, improving the timing of anesthesia evaluation, optimizing the process of operation notice with an information system, and implementing the regulations of virtual bed management. The incidence of USC reduced from 10.21% in Jan. 2016 to 3.8% in Dec. 2016, and the Z-score increased from 1.25 to 1.68, which improved patient safety and demonstrated that Lean Six Sigma was an effective method to solve cross-department issues in hospital.


Asunto(s)
Eficiencia Organizacional , Procedimientos Quirúrgicos Operativos , Gestión de la Calidad Total , China , Humanos , Incidencia , Mejoramiento de la Calidad , Centros de Atención Terciaria
6.
Clin Cancer Res ; 25(23): 7126-7138, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31484667

RESUMEN

PURPOSE: Vα24-invariant natural killer T cells (NKT) are attractive carriers for chimeric antigen receptors (CAR) due to their inherent antitumor properties and preferential localization to tumor sites. However, limited persistence of CAR-NKTs in tumor-bearing mice is associated with tumor recurrence. Here, we evaluated whether coexpression of the NKT homeostatic cytokine IL15 with a CAR enhances the in vivo persistence and therapeutic efficacy of CAR-NKTs. EXPERIMENTAL DESIGN: Human primary NKTs were ex vivo expanded and transduced with CAR constructs containing an optimized GD2-specific single-chain variable fragment and either the CD28 or 4-1BB costimulatory endodomain, each with or without IL15 (GD2.CAR or GD2.CAR.15). Constructs that mediated robust CAR-NKT cell expansion were selected for further functional evaluation in vitro and in xenogeneic mouse models of neuroblastoma. RESULTS: Coexpression of IL15 with either costimulatory domain increased CAR-NKT absolute numbers. However, constructs containing 4-1BB induced excessive activation-induced cell death and reduced numeric expansion of NKTs compared with respective CD28-based constructs. Further evaluation of CD28-based GD2.CAR and GD2.CAR.15 showed that coexpression of IL15 led to reduced expression levels of exhaustion markers in NKTs and increased multiround in vitro tumor cell killing. Following transfer into mice bearing neuroblastoma xenografts, GD2.CAR.15 NKTs demonstrated enhanced in vivo persistence, increased localization to tumor sites, and improved tumor control compared with GD2.CAR NKTs. Importantly, GD2.CAR.15 NKTs did not produce significant toxicity as determined by histopathologic analysis. CONCLUSIONS: Our results informed selection of the CD28-based GD2.CAR.15 construct for clinical testing and led to initiation of a first-in-human CAR-NKT cell clinical trial (NCT03294954).


Asunto(s)
Citotoxicidad Inmunológica/inmunología , Gangliósidos/inmunología , Inmunoterapia Adoptiva/métodos , Interleucina-15/inmunología , Células T Asesinas Naturales/trasplante , Neuroblastoma/terapia , Receptores Quiméricos de Antígenos/inmunología , Animales , Apoptosis , Proliferación Celular , Humanos , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células T Asesinas Naturales/inmunología , Neuroblastoma/inmunología , Neuroblastoma/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Cancer Lett ; 457: 129-141, 2019 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-31100410

RESUMEN

Neuroblastoma (NB) is the most common extracranial solid tumor in early childhood. Despite intensive multimodal therapy, nearly half of children with high-risk disease will relapse with therapy-resistant tumors. Dysregulation of MAPK pathway has been implicated in the pathogenesis of relapsed and refractory NB patients, which underscores the possibility of targeting MAPK signaling cascade as a novel therapeutic strategy. In this study, we found that high expressions of RAF family kinases correlated with advanced tumor stage, high-risk disease, tumor progression, and poor overall survival. Targeted inhibition of RAF family kinases with the novel small molecule inhibitor agerafenib abrogated the activation of ERK MAPK pathway in NB cells. Agerafenib significantly inhibited the cell proliferation and colony formation ability of NB cells in vitro, and its combination with traditional chemotherapy showed a synergistic pro-apoptotic effect. More importantly, agerafenib exhibited a favorable toxicity profile, potently suppressed tumor growth, and prolonged survival in NB mouse models. In conclusion, our preclinical data suggest that agerafenib might be an effective therapeutic agent for NB treatment, both as a single-agent and in combination with chemotherapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Doxorrubicina/farmacología , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Neuroblastoma/tratamiento farmacológico , Compuestos de Fenilurea/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Ratones Desnudos , Ratones Transgénicos , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/enzimología , Neuroblastoma/genética , Neuroblastoma/patología , Transducción de Señal , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Oncol Rep ; 41(1): 143-153, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30320362

RESUMEN

Hepatoblastoma is the most common malignant liver tumor in children. Since it is often unresectable and exhibits drug resistance, the treatment of advanced hepatoblastoma is challenging. The orphan nuclear receptor liver receptor homolog­1 (LRH­1) serves prominent roles in malignancy; however, to the best of our knowledge, the role of LRH­1 in hepatoblastoma remains unknown. In the present study, human hepatoblastoma cell lines were analyzed; the mRNA and protein expression levels of LRH­1 were significantly higher in HepG2 and HuH6 cells compared with those in HepT1 cells and control THLE­2 cells. Knockdown of LRH­1 resulted in decreased HepG2 and HuH6 cell proliferation via downregulation of cyclin D1 (CCND1) and c­Myc. Furthermore, treatment with an LRH­1 antagonist (LRA) inhibited the proliferation and colony formation of cell lines in a dose­dependent manner, and induced cell cycle arrest at G1 phase through inhibition of CCND1 expression. Finally, LRA treatment enhanced the cytotoxic effects of doxorubicin on hepatoblastoma cells. Collectively, these findings suggested that LRH­1 may have an important role in the progression of hepatoblastoma and implicated LRA as a novel, potential therapeutic agent for the treatment of hepatoblastoma.


Asunto(s)
Hepatoblastoma/metabolismo , Neoplasias Hepáticas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Preescolar , Ciclina D1/metabolismo , Doxorrubicina/farmacología , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células Hep G2 , Hepatoblastoma/genética , Humanos , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores
9.
J Immunol ; 201(7): 2141-2153, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30111631

RESUMEN

T cells expressing CD19-specific chimeric Ag receptors (CARs) produce high remission rates in B cell lymphoma, but frequent disease recurrence and challenges in generating sufficient numbers of autologous CAR T cells necessitate the development of alternative therapeutic effectors. Vα24-invariant NKTs have intrinsic antitumor properties and are not alloreactive, allowing for off-the-shelf use of CAR-NKTs from healthy donors. We recently reported that CD62L+ NKTs persist longer and have more potent antilymphoma activity than CD62L- cells. However, the conditions governing preservation of CD62L+ cells during NKT cell expansion remain largely unknown. In this study, we demonstrate that IL-21 preserves this crucial central memory-like NKT subset and enhances its antitumor effector functionality. We found that following antigenic stimulation with α-galactosylceramide, CD62L+ NKTs both expressed IL-21R and secreted IL-21, each at significantly higher levels than CD62L- cells. Although IL-21 alone failed to expand stimulated NKTs, combined IL-2/IL-21 treatment produced more NKTs and increased the frequency of CD62L+ cells versus IL-2 alone. Gene expression analysis comparing CD62L+ and CD62L- cells treated with IL-2 alone or IL-2/IL-21 revealed that the latter condition downregulated the proapoptotic protein BIM selectively in CD62L+ NKTs, protecting them from activation-induced cell death. Moreover, IL-2/IL-21-expanded NKTs upregulated granzyme B expression and produced more TH1 cytokines, leading to enhanced in vitro cytotoxicity of nontransduced and anti-CD19-CAR-transduced NKTs against CD1d+ and CD19+ lymphoma cells, respectively. Further, IL-2/IL-21-expanded CAR-NKTs dramatically increased the survival of lymphoma-bearing NSG mice compared with IL-2-expanded CAR-NKTs. These findings have immediate translational implications for the development of NKT cell-based immunotherapies targeting lymphoma and other malignancies.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Interleucinas/metabolismo , Linfoma de Células B/terapia , Células T Asesinas Naturales/inmunología , Células TH1/inmunología , Animales , Línea Celular Tumoral , Células Cultivadas , Citotoxicidad Inmunológica , Galactosilceramidas/inmunología , Granzimas/metabolismo , Humanos , Interleucina-2/metabolismo , Selectina L/metabolismo , Activación de Linfocitos , Linfoma de Células B/inmunología , Ratones , Células T Asesinas Naturales/trasplante , Trasplante de Neoplasias , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo
10.
Asia Pac J Clin Oncol ; 14(5): e352-e358, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29749051

RESUMEN

OBJECTIVE: Several members of protocadherins (PCDHs) have been identified as tumor suppressor genes in human carcinogenesis, but little is known about PCDH19. The aim of the present study was to assess the expression and methylation of PCDH19 in hepatocellular carcinoma (HCC). METHODS: The RNA-seq data from The Cancer Genome Atlas Database were downloaded and used for analyzing PCDH19 expression in HCC patients and normal liver tissues. We collected 63 paired tumor and nontumor liver tissues from hepatitis B virus-related HCC patients. The expression of PCDH19 was detected by real-time quantitative RT-PCR assay. The methylation of PCDH19 gene was analyzed by DNA methylation-sensitive endonuclease digestion and the sequential quantitative PCR. The prognostic value of PCDH19 gene methylation was evaluated by Kaplan-Meier analyses. RESULTS: PCDH19 expression was downregulated in HCC tissues and seven HCC cell lines compared to nontumor tissues. PCHD19 promoter was frequently hypermethylated in three (SMMC7721, Hep3B and SNU387) of seven HCC cell lines and 5-aza-dC treatment could significantly increased the PCDH19 expression in these methylated cells. In addition, HCC tumor tissues exhibited significantly increased PCDH19 hypermethylation both in frequency (30.15% vs 9.52%, P = 0.003) and in intensity (P = 0.002) compared to that in nontumor tissues. Kaplan-Meier survival analysis revealed that PCDH19 hypermethylation was correlated with the poor overall survival of HCC patients. CONCLUSION: PCDH19 expression was downregulated in HCC, which was mediated at least in part by promoter hypermethylation. PCDH19 hypermethylation might present a potential prognostic marker in HCC patients.


Asunto(s)
Biomarcadores de Tumor/genética , Cadherinas/genética , Carcinoma Hepatocelular/patología , Metilación de ADN , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/cirugía , Islas de CpG , Regulación hacia Abajo , Femenino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/cirugía , Masculino , Persona de Mediana Edad , Pronóstico , Regiones Promotoras Genéticas , Protocadherinas
11.
Sci Rep ; 7(1): 17751, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29259231

RESUMEN

Currently, preclinical testing of therapies for hepatoblastoma (HB) is limited to subcutaneous and intrasplenic xenograft models that do not recapitulate the hepatic tumors seen in patients. We hypothesized that injection of HB cell lines into the livers of mice would result in liver tumors that resemble their clinical counterparts. HepG2 and Huh-6 HB cell lines were injected, and tumor growth was monitored with bioluminescence imaging (BLI) and magnetic resonance imaging (MRI). Levels of human α-fetoprotein (AFP) were monitored in the serum of animals. Immunohistochemical and gene expression analyses were also completed on xenograft tumor samples. BLI signal indicative of tumor growth was seen in 55% of HepG2- and Huh-6-injected animals after a period of four to seven weeks. Increased AFP levels correlated with tumor growth. MRI showed large intrahepatic tumors with active neovascularization. HepG2 and Huh-6 xenografts showed expression of ß-catenin, AFP, and Glypican-3 (GPC3). HepG2 samples displayed a consistent gene expression profile most similar to human HB tumors. Intrahepatic injection of HB cell lines leads to liver tumors in mice with growth patterns and biologic, histologic, and genetic features similar to human HB tumors. This orthotopic xenograft mouse model will enable clinically relevant testing of novel agents for HB.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas Experimentales , Trasplante de Neoplasias , Neovascularización Patológica , Animales , Carcinoma Hepatocelular/irrigación sanguínea , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Células Hep G2 , Xenoinjertos , Humanos , Neoplasias Hepáticas Experimentales/irrigación sanguínea , Neoplasias Hepáticas Experimentales/diagnóstico por imagen , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neovascularización Patológica/diagnóstico por imagen , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Oncotarget ; 8(55): 94780-94792, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29212266

RESUMEN

Treatment failure in high risk neuroblastoma (NB) is largely due to the development of chemotherapy resistance. We analyzed the gene expression changes associated with exposure to chemotherapy in six high risk NB tumors with the aid of the Connectivity Map bioinformatics platform. Ten therapeutic agents were predicted to have a high probability of reversing the transcriptome changes associated with neoadjuvant chemotherapy treatment. Among these agents, initial screening showed the EWS-FLI1 and RNA helicase A interaction inhibitor YK-4-279, had obvious cytotoxic effects on NB cell lines. Using a panel of NB cell lines, including MYCN nonamplified (SK-N-AS, SH-SY5Y, and CHLA-255), and MYCN amplified (NB-19, NGP, and IMR-32) cell lines, we found that YK-4-279 had cytotoxic effects on all lines tested. In addition, YK-4-279 also inhibited cell proliferation and anchorage-independent growth and induced cell apoptosis of these cells. YK-4-279 enhanced the cytotoxic effect of doxorubicin (Dox). Moreover, YK-4-279 was able to overcome the established chemoresistance of LA-N-6 NB cells. In an orthotopic xenograft NB mouse model, YK-4-279 inhibited NB tumor growth and induced apoptosis in tumor cells through PARP and Caspase 3 cleavage in vivo. While EWS-FLI1 fusion protein is not frequently found in NB, using the R2 public database of neuroblastoma outcome and gene expression, we found that high expression of EWSR1 was associated with poor patient outcome. Knockdown of EWSR1 inhibited the oncogenic potential of neuroblastoma cell lines. Taken together, our results indicate that YK-4-279 might be a promising agent for treatment of NB that merits further exploration.

13.
Cancer Lett ; 400: 61-68, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28455243

RESUMEN

Activating germline mutations of anaplastic lymphoma kinase (ALK) occur in most cases of hereditary neuroblastoma (NB) and the constitutively active kinase activity of ALK promotes cell proliferation and survival in NB. Therefore, ALK kinase is a potential therapeutic target for NB. In this study, we show that the novel ALK inhibitor alectinib effectively suppressed cell proliferation and induces apoptosis in NB cell lines with either wild-type ALK or mutated ALK (F1174L and D1091N) by blocking ALK-mediated PI3K/Akt/mTOR signaling. In addition, alectinib enhanced doxorubicin-induced cytotoxicity and apoptosis in NB cells. Furthermore, alectinib induced apoptosis in an orthotopic xenograft NB mouse model. Also, in the TH-MYCN transgenic mouse model, alectinib resulted in decreased tumor growth and prolonged survival time. These results indicate that alectinib may be a promising therapeutic agent for the treatment of NB.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carbazoles/farmacología , Proliferación Celular/efectos de los fármacos , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/tratamiento farmacológico , Piperidinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Carga Tumoral/efectos de los fármacos , Quinasa de Linfoma Anaplásico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Doxorrubicina/farmacología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Concentración 50 Inhibidora , Ratones Desnudos , Ratones Transgénicos , Mutación , Neuroblastoma/enzimología , Neuroblastoma/genética , Neuroblastoma/patología , Fenotipo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Cell Rep ; 16(3): 744-56, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27373160

RESUMEN

The development of non-alcoholic fatty liver disease (NAFLD) is a multiple step process. Here, we show that activation of cdk4 triggers the development of NAFLD. We found that cdk4 protein levels are elevated in mouse models of NAFLD and in patients with fatty livers. This increase leads to C/EBPα phosphorylation on Ser193 and formation of C/EBPα-p300 complexes, resulting in hepatic steatosis, fibrosis, and hepatocellular carcinoma (HCC). The disruption of this pathway in cdk4-resistant C/EBPα-S193A mice dramatically reduces development of high-fat diet (HFD)-mediated NAFLD. In addition, inhibition of cdk4 by flavopiridol or PD-0332991 significantly reduces development of hepatic steatosis, the first step of NAFLD. Thus, this study reveals that activation of cdk4 triggers NAFLD and that inhibitors of cdk4 may be used for the prevention/treatment of NAFLD.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Proteína p300 Asociada a E1A/metabolismo , Hígado Graso/metabolismo , Hígado Graso/patología , Humanos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones , Fosforilación/fisiología
15.
Hepatology ; 61(1): 315-25, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25043739

RESUMEN

UNLABELLED: Liver cancer is the fifth most common cancer. A highly invasive surgical resection of the liver tumor is the main approach used to eliminate the tumor. Mechanisms that terminate liver regeneration when the liver reaches the original size are not known. The aims of this work were to generate an animal model that fails to stop liver regeneration after surgical resections and elucidate mechanisms that are involved in termination of liver regeneration. Because epigenetic control of liver function has been previously implicated in the regulation of liver proliferation, we generated C/EBPα-S193A knockin mice, which have alterations in formation of complexes of C/EBP family proteins with chromatin remodeling proteins. The C/EBPα-S193A mice have altered liver morphology and altered liver function leading to changes of glucose metabolism and blood parameters. Examination of the proliferative capacity of C/EBPα-S193A livers showed that livers of S193A mice have a higher rate of proliferation after birth, but stop proliferation at the age of 2 months. These animals have increased liver proliferation in response to liver surgery as well as carbon tetrachloride (CCl4 )-mediated injury. Importantly, livers of C/EBPα-S193A mice fail to stop liver regeneration after surgery when livers reach the original, preresection, size. The failure of S193A livers to stop regeneration correlates with the epigenetic repression of key regulators of liver proliferation C/EBPα, p53, FXR, SIRT1, PGC1α, and TERT by C/EBPß-HDAC1 complexes. The C/EBPß-HDAC1 complexes also repress promoters of enzymes of glucose synthesis PEPCK and G6Pase. CONCLUSION: Proper cooperation of C/EBP and chromatin remodeling proteins is essential for the termination of liver regeneration after surgery and for maintenance of liver functions.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Hepatocitos/fisiología , Histona Desacetilasa 1/metabolismo , Regeneración Hepática , Animales , Ciclo Celular , Enfermedad Hepática Inducida por Sustancias y Drogas , Glucosa-6-Fosfatasa/metabolismo , Hepatectomía , Hígado/fisiología , Masculino , Ratones , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Sirtuina 1/metabolismo , Telomerasa/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
16.
J Biol Chem ; 289(2): 1106-18, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24273171

RESUMEN

The aged liver is more sensitive to the drug treatments and has a high probability of developing liver disorders such as fibrosis, cirrhosis, and cancer. Here we present mechanisms underlying age-associated severe liver injury and acceleration of liver proliferation after CCl4 treatments. We have examined liver response to CCl4 treatments using old WT mice and young C/EBPα-S193D knockin mice, which express an aged-like isoform of C/EBPα. Both animal models have altered chromatin structure as well as increased liver injury and proliferation after acute CCl4 treatments. We found that these age-related changes are associated with the repression of key regulators of liver biology: C/EBPα, Farnesoid X Receptor (FXR) and telomere reverse transcriptase (TERT). In quiescent livers of old WT and young S193D mice, the inhibition of TERT is mediated by HDAC1-C/EBPα complexes. After CCl4 treatments, TERT, C/EBPα and FXR are repressed by different mechanisms. These mechanisms include the increase of a dominant negative isoform, C/EBPß-LIP, and subsequent repression of C/EBPα, FXR, and TERT promoters. C/EBPß-LIP also disrupts Rb-E2F1 complexes in C/EBPα-S193D mice after CCl4 treatments. To examine if these alterations are involved in drug-mediated liver diseases, we performed chronic treatments of mice with CCl4. We found that C/EBPα-S193D mice developed fibrosis much more rapidly than WT mice. Thus, our data show that the age-associated alterations of C/EBP proteins create favorable conditions for the increased liver proliferation after CCl4 treatments and for development of drug-mediated liver diseases.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hígado/metabolismo , Factores de Edad , Animales , Western Blotting , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/genética , Tetracloruro de Carbono/toxicidad , Proliferación Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Hígado/efectos de los fármacos , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Ratones , Ratones Noqueados , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Índice de Severidad de la Enfermedad , Telomerasa/genética , Telomerasa/metabolismo
17.
Mech Ageing Dev ; 134(9): 407-15, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24007921

RESUMEN

Activation of xenobiotic metabolism pathways has been linked to lifespan extension in different models of aging. However, the mechanisms underlying activation of xenobiotic genes remain largely unknown. Here we showed that although farnesoid X receptor (FXR, Nr1h4) mRNA levels do not change significantly, FXR protein levels are elevated in the livers of the long-lived Little mice, leading to increased DNA binding activity of FXR. Hepatic FXR expression is sex-dependent in wild-type mice but not in Little mice, implying that up-regulation of FXR might be dependent on the reduction of growth hormone in Little mice. Growth hormone treatment decreased hepatic expression of FXR and xenobiotic genes Abcb1a, Fmo3 and Gsta2 in both wild-type and Little mice, suggesting an association between FXR and xenobiotic gene expression. We found that Abcb1a is transactivated by FXR via direct binding of FXR/retinoid X receptor α (RXRα) heterodimer to a response element at the proximal promoter. FXR also positively controls Fmo3 and Gsta2 expression through direct interaction with the response elements in these genes. Our study demonstrates that xenobiotic genes are direct transcriptional targets of FXR and suggests that FXR signaling may play a critical role in the lifespan extension observed in Little mice.


Asunto(s)
Longevidad , Receptores Citoplasmáticos y Nucleares/fisiología , Xenobióticos/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Secuencia de Bases , Línea Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Dimerización , Femenino , Regulación de la Expresión Génica , Glutatión Transferasa/metabolismo , Hormona del Crecimiento/metabolismo , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Mutantes , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Neuropéptido/genética , Receptores de Hormona Reguladora de Hormona Hipofisaria/genética , Receptor alfa X Retinoide/metabolismo , Activación Transcripcional
18.
J Biol Chem ; 288(20): 14451-14462, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23564453

RESUMEN

Cancer changes biological processes in the liver by altering gene expression at the levels of transcription, translation, and protein modification. The RNA binding protein CUGBP1 is a key regulator of translation of CCAAT enhancer binding protein ß and histone deacetylase 1 (HDAC1). These proteins form complexes that are involved in the regulation of liver biology. Here we show a critical role of the translational activation of CCAAT/enhancer binding protein ß-HDAC1 complexes in the development of liver cancer mediated by diethylnitrosamine. We found that diethylnitrosamine increases the levels of CUGBP1 and activates CUGBP1 by phosphorylation, leading to the formation of the CUGBP1-eIF2 complex, which is an activator of translation of CUGBP1-dependent mRNAs. The elevation of the CUGBP1-eIF2 complex increases translation of C/EBPß and HDAC1, resulting in an increase of C/EBPß-HDAC1 complexes at later stages of liver cancer. We found that C/EBPß-HDAC1 complexes repress promoters of three key regulators of liver functions: p53, SIRT1, and PGC1α. As the result of this suppression, the p53-, SIRT1-, and PGC1α-dependent downstream pathways are reduced, leading to increased liver proliferation. We also found that the proper regulation of C/EBPß-HDAC1 complexes is required for the maintenance of biological levels of p53, SIRT1, and PGC1α in quiescent livers and at early stages of liver cancer. Taken together, these studies showed that the development of liver cancer includes a tight regulation of levels of C/EBPß-HDAC1 complexes on the levels of transcription, translation, and posttranslational modifications.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Histona Desacetilasa 1/metabolismo , Neoplasias Hepáticas/metabolismo , Sirtuina 1/metabolismo , Transactivadores/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Secuencia de Bases , Proliferación Celular , Dietilnitrosamina/farmacología , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Humanos , Neoplasias Hepáticas/inducido químicamente , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Factores de Transcripción/metabolismo , Activación Transcripcional
19.
Cell Rep ; 3(3): 831-43, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23499441

RESUMEN

Molecular mechanisms underpinning nonalcoholic fatty liver disease (NAFLD) are not well understood. The earliest step of NAFLD is hepatic steatosis, which is one of the main characteristics of aging liver. Here, we present a molecular scenario of age-related liver steatosis. We show that C/EBPα-S193D knockin mice have age-associated epigenetic changes and develop hepatic steatosis at 2 months of age. The underlying mechanism of the hepatic steatosis in old wild-type (WT) mice and in young S193D mice includes increased amounts of tripartite p300-C/EBPα/ß complexes that activate promoters of five genes that drive triglyceride synthesis. Knockdown of p300 in old WT mice inhibits hepatic steatosis. Indeed, transgenic mice expressing dominant-negative p300 have fewer C/EBPα/ß-p300 complexes and do not develop age-dependent hepatic steatosis. Notably, the p300-C/EBPα/ß pathway is activated in the livers of patients with NAFLD. Thus, our results show that p300 and C/EBP proteins are essential participants in hepatic steatosis.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/metabolismo , Hígado Graso/metabolismo , Transcripción Genética , Triglicéridos/biosíntesis , Regulación hacia Arriba , Factores de Edad , Animales , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo , Epigénesis Genética , Hígado Graso/enzimología , Hígado Graso/genética , Humanos , Ratones , Mutación , Regiones Promotoras Genéticas
20.
Hepatology ; 57(3): 1098-106, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23172628

RESUMEN

UNLABELLED: One of the early events in the development of liver cancer is a neutralization of tumor suppressor proteins Rb, p53, hepatocyte nuclear factor 4α (HNF4α), and CCAAT/enhancer binding protein (C/EBP) α. The elimination of these proteins is mediated by a small subunit of proteasome, gankyrin, which is activated by cancer. The aim of this study was to determine the mechanisms that repress gankyrin in quiescent livers and mechanisms of activation of gankyrin in liver cancer. We found that farnesoid X receptor (FXR) inhibits expression of gankyrin in quiescent livers by silencing the gankyrin promoter through HDAC1-C/EBPß complexes. C/EBPß is a key transcription factor that delivers HDAC1 to gankyrin promoter and causes epigenetic silencing of the promoter. We show that down-regulation of C/EBPß in mouse hepatoma cells and in mouse livers reduces C/EBPß-HDAC1 complexes and activates the gankyrin promoter. Deletion of FXR signaling in mice leads to de-repression of the gankyrin promoter and to spontaneous development of liver cancer at 12 months of age. Diethylnitrosoamine (DEN)-mediated liver cancer in wild-type mice also involves the reduction of FXR and activation of gankyrin. Examination of liver cancer in old mice and liver cancer in human patients revealed that FXR is reduced, while gankyrin is elevated during spontaneous development of liver cancer. Searching for animal models with altered levels of FXR, we found that long-lived Little mice have high levels of FXR and do not develop liver cancer with age and after DEN injections due to failure to activate gankyrin and eliminate Rb, p53, HNF4α and C/EBPα proteins. CONCLUSION: FXR prevents liver cancer by inhibiting the gankyrin promoter via C/EBPß-HDAC1 complexes, leading to subsequent protection of tumor suppressor proteins from degradation.


Asunto(s)
Carcinoma Hepatocelular/fisiopatología , Regulación Neoplásica de la Expresión Génica/fisiología , Neoplasias Hepáticas/fisiopatología , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/genética , Animales , Secuencia de Bases , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Histona Desacetilasa 1/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Endogámicos , Ratones Noqueados , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/fisiología , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Interferente Pequeño/genética , Receptores Citoplasmáticos y Nucleares/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA