RESUMEN
The design of bioelectronics capable of stably tracking brain-wide, single-cell, and millisecond-resolved neural activities in the developing brain is critical to the study of neuroscience and neurodevelopmental disorders. During development, the three-dimensional (3D) structure of the vertebrate brain arises from a 2D neural plate 1,2 . These large morphological changes previously posed a challenge for implantable bioelectronics to track neural activity throughout brain development 3-9 . Here, we present a tissue-level-soft, sub-micrometer-thick, stretchable mesh microelectrode array capable of integrating into the embryonic neural plate of vertebrates by leveraging the 2D-to-3D reconfiguration process of the tissue itself. Driven by the expansion and folding processes of organogenesis, the stretchable mesh electrode array deforms, stretches, and distributes throughout the entire brain, fully integrating into the 3D tissue structure. Immunostaining, gene expression analysis, and behavioral testing show no discernible impact on brain development or function. The embedded electrode array enables long-term, stable, brain-wide, single-unit-single-spike-resolved electrical mapping throughout brain development, illustrating how neural electrical activities and population dynamics emerge and evolve during brain development.
RESUMEN
The complex sequential response of frustrated materials results from the interactions between material bits called hysterons. Hence, a central challenge is to understand and control these interactions, so that materials with targeted pathways and functionalities can be realized. Here, we show that hysterons in serial configurations experience geometrically controllable antiferromagnetic-like interactions. We create hysteron-based metamaterials that leverage these interactions to realize targeted pathways, including those that break the return point memory property, characteristic of independent or weakly interacting hysterons. We uncover that the complex response to sequential driving of such strongly interacting hysteron-based materials can be described by finite state machines. We realize information processing operations such as string parsing in materia, and outline a general framework to uncover and characterize the FSMs for a given physical system. Our work provides a general strategy to understand and control hysteron interactions, and opens a broad avenue toward material-based information processing.
RESUMEN
The surge in advanced manufacturing techniques has led to a paradigm shift in the realm of material design from developing completely new chemistry to tailoring geometry within existing materials. Kirigami, evolved from a traditional cultural and artistic craft of cutting and folding, has emerged as a powerful framework that endows simple 2D sheets with unique mechanical, thermal, optical, and acoustic properties, as well as shape-shifting capabilities. Given its flexibility, versatility, and ease of fabrication, there are significant efforts in developing kirigami algorithms to create various architectured materials for a wide range of applications. This review summarizes the fundamental mechanisms that govern the transformation of kirigami structures and elucidates how these mechanisms contribute to their distinctive properties, including high stretchability and adaptability, tunable surface topography, programmable shape morphing, and characteristics of bistability and multistability. It then highlights several promising applications enabled by the unique kirigami designs and concludes with an outlook on the future challenges and perspectives of kirigami-inspired metamaterials toward real-world applications.
RESUMEN
Maxwell lattices possess distinct topological states that feature mechanically polarized edge behaviors and asymmetric dynamic responses protected by the topology of their phonon bands. Until now, demonstrations of non-trivial topological behaviors from Maxwell lattices have been limited to fixed configurations or have achieved reconfigurability using mechanical linkages. Here, a monolithic transformable topological mechanical metamaterial is introduced in the form of a generalized kagome lattice made from a shape memory polymer (SMP). It is capable of reversibly exploring topologically distinct phases of the non-trivial phase space via a kinematic strategy that converts sparse mechanical inputs at free edge pairs into a biaxial, global transformation that switches its topological state. All configurations are stable in the absence of confinement or a continuous mechanical input. Its topologically-protected, polarized mechanical edge stiffness is robust against broken hinges or conformational defects. More importantly, it shows that the phase transition of SMPs that modulate chain mobility, can effectively shield a dynamic metamaterial's topological response from its own kinematic stress history, referred to as "stress caching". This work provides a blueprint for monolithic transformable mechanical metamaterials with topological mechanical behavior that is robust against defects and disorder while circumventing their vulnerability to stored elastic energy, which will find applications in switchable acoustic diodes and tunable vibration dampers or isolators.
RESUMEN
Liquid crystalline elastomers (LCEs) with intrinsic molecular anisotropy can be programmed to morph shapes under external stimuli. However, it is difficult to program the position and orientation of individual mesogenic units separately and locally, whether in-plane or out-of-plane, since each mesogen is linked to adjacent ones through the covalently bonded polymer chains. Here, dually responsive, spindle-shaped micro-actuators are synthesized from LCE composites, which can reorient under a magnetic field and change the shape upon heating. When the discrete micro-actuators are embedded in a conventional and nonresponsive elastomer with programmed height distribution and in-plane orientation in local regions, robust and complex shape morphing induced by the cooperative actuations of the locally distributed micro-actuators, which corroborates with finite element analysis, are shown. The spatial encoding of discrete micro-actuators in a nonresponsive matrix allows to decouple the actuators and the matrix, broadening the material palette to program local and global responses to stimuli for applications including soft robotics, smart wearables, and sensors.
RESUMEN
Microdroplets made from chiral liquid crystals (CLCs) can display reflective structural colors. However, the small area of reflection and their isotropic shape limit their performance. Here, Janus microdroplets are synthesized through phase separation between CLCs and silicone oil. The as-synthesized Janus microdroplets show primary structural colors with ≈14 times larger area compared to their spherical counterparts at a specific orientation; the orientation and thus the colored/transparent states can be switched by applying a magnetic field. The color of the Janus microdroplets can be tuned ranging from red to violet by varying the concentration of the chiral dopant in the CLC phase. Due to the density difference between the two phases, the Janus microdroplets prefer to orientate the silicone oil side up vertically, enabling the self-recoverable structural color after distortion. The Janus microdroplets can be dispersed in aqueous media to track the configuration and speed of magnetic objects. They can also be patterned as multiplexed labels for data encryption. The magnetic field-responsive Janus CLC microdroplets presented here offer new insights to generate and switch reflective colors with high color saturation. It also paves the way for broader applications of CLCs, including anti-counterfeiting, data encryption, display, and untethered speed sensors.
RESUMEN
Inhomogeneous in-plane deformation of soft materials or cutting and folding of inextensible flat sheets enables shape-morphing from two dimensional (2D) to three-dimensional (3D), while the resulting structures often have weakened mechanical strength. Shells like nacre are known for the superior fracture toughness due to the "brick and mortar" composite layers, enabling stress redistribution and crack stopping. Here, we report an optimal and universal cutting and stacking strategy that transforms composite plies into 3D doubly curved shapes with nacre-like architectures. The multilayered laminate exhibits staggered cut distributions, while the interlaminar shear mitigates the cut-induced mechanical weakness. The experimentally consolidated hemispherical shells exhibit, on average, 37 and 69% increases of compression peak forces, versus those with random cut distributions, when compressed in different directions. Our approach opens a previously unidentified paradigm for shape-conforming arbitrarily curved surfaces while achieving high mechanical performance.
RESUMEN
The main challenge in cancer genomics is to distinguish the driver genes from passenger or neutral genes. Cancer genomes exhibit extensive mutational heterogeneity that no two genomes contain exactly the same somatic mutations. Such mutual exclusivity (ME) of mutations has been observed in cancer data and is associated with functional pathways. Analysis of ME patterns may provide useful clues to driver genes or pathways and may suggest novel understandings of cancer progression. In this article, we consider a probabilistic, generative model of ME, and propose a powerful and greedy algorithm to select the mutual exclusivity gene sets. The greedy method includes a pre-selection procedure and a stepwise forward algorithm which can significantly reduce computation time. Power calculations suggest that the new method is efficient and powerful for one ME set or multiple ME sets with overlapping genes. We illustrate this approach by analysis of the whole-exome sequencing data of cancer types from TCGA.
Asunto(s)
Biología Computacional , Neoplasias , Algoritmos , Biología Computacional/métodos , Genómica/métodos , Humanos , Mutación , Neoplasias/genéticaRESUMEN
Inflatable robots are becoming increasingly popular, especially in applications where safe interactions are a priority. However, designing multifunctional robots that can operate with a single pressure input is challenging. A potential solution is to couple inflatables with passive valves that can harness the flow characteristics to create functionality. In this study, simple, easy to fabricate, lightweight, and inexpensive mechanical valves are presented that harness viscous flow and snapping arch principles. The mechanical valves can be fully integrated on-board, enabling the control of the incoming airflow to realize multifunctional robots that operate with a single pressure input, with no need for electronic components, cables, or wires. By means of three robotic demos and guided by a numerical model, the capabilities of the valves are demonstrated and optimal input profiles are identified to achieve prescribed functionalities. The study enriches the array of available mechanical valves for inflatable robots and enables new strategies to realize multifunctional robots with on-board flow control.
RESUMEN
Kirigami, the Japanese art of paper cutting, has recently enabled the design of stretchable mechanical metamaterials that can be easily realized by embedding arrays of periodic cuts into an elastic sheet. Here, kirigami principles are exploited to design inflatables that can mimic target shapes upon pressurization. The system comprises a kirigami sheet embedded into an unstructured elastomeric membrane. First, it is shown that the inflated shape can be controlled by tuning the geometric parameters of the kirigami pattern. Then, by applying a simple optimization algorithm, the best parameters that enable the kirigami inflatables to transform into a family of target shapes at a given pressure are identified. Furthermore, thanks to the tessellated nature of the kirigami, it is shown that we can selectively manipulate the parameters of the single units to allow the reproduction of features at different scales and ultimately enable a more accurate mimicking of the target.
RESUMEN
Transition fronts, moving through solids and fluids in the form of propagating domain or phase boundaries, have recently been mimicked at the structural level in bistable architectures. What has been limited to simple one-dimensional (1D) examples is here cast into a blueprint for higher dimensions, demonstrated through 2D experiments and described by a continuum mechanical model that draws inspiration from phase transition theory in crystalline solids. Unlike materials, the presented structural analogs admit precise control of the transition wave's direction, shape, and velocity through spatially tailoring the underlying periodic network architecture (locally varying the shape or stiffness of the fundamental building blocks, and exploiting interactions of transition fronts with lattice defects such as point defects and free surfaces). The outcome is a predictable and programmable strongly nonlinear metamaterial motion with potential for, for example, propulsion in soft robotics, morphing surfaces, reconfigurable devices, mechanical logic, and controlled energy absorption.
RESUMEN
Kirigami-inspired metamaterials are attracting increasing interest because of their ability to achieve extremely large strains and shape changes via out-of-plane buckling. While in flat kirigami sheets, the ligaments buckle simultaneously as Euler columns, leading to a continuous phase transition; here, we demonstrate that kirigami shells can also support discontinuous phase transitions. Specifically, we show via a combination of experiments, numerical simulations, and theoretical analysis that, in cylindrical kirigami shells, the snapping-induced curvature inversion of the initially bent ligaments results in a pop-up process that first localizes near an imperfection and then, as the deformation is increased, progressively spreads through the structure. Notably, we find that the width of the transition zone as well as the stress at which propagation of the instability is triggered can be controlled by carefully selecting the geometry of the cuts and the curvature of the shell. Our study significantly expands the ability of existing kirigami metamaterials and opens avenues for the design of the next generation of responsive surfaces as demonstrated by the design of a smart skin that significantly enhances the crawling efficiency of a simple linear actuator.