Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Total Environ ; 947: 174450, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38969138

RESUMEN

Fine particulate matter (PM2.5) can cause brain damage and diseases. Of note, ultrafine particles (UFPs) with an aerodynamic diameter less than or equal to 100 nm are a growing concern. Evidence has suggested toxic effects of PM2.5 and UFPs on the brain and links to neurological diseases. However, the underlying mechanism has not yet been fully illustrated due to the variety of the study models, different endpoints, etc. The adverse outcome pathway (AOP) framework is a pathway-based approach that could systematize mechanistic knowledge to assist health risk assessment of pollutants. Here, we constructed AOPs by collecting molecular mechanisms in PM-induced neurotoxicity assessments. We chose particulate matter (PM) as a stressor in the Comparative Toxicogenomics Database (CTD) and identified the critical toxicity pathways based on Ingenuity Pathway Analysis (IPA). We found 65 studies investigating the potential mechanisms linking PM2.5 and UFPs to neurotoxicity, which contained 2, 675 genes in all. IPA analysis showed that neuroinflammation signaling and glucocorticoid receptor signaling were the common toxicity pathways. The upstream regulator analysis (URA) of PM2.5 and UFPs demonstrated that the neuroinflammation signaling was the most initially triggered upstream event. Therefore, neuroinflammation was recognized as the MIE. Strikingly, there is a clear sequence of activation of downstream signaling pathways with UFPs, but not with PM2.5. Moreover, we found that inflammation response and homeostasis imbalance were key cellular events in PM2.5 and emphasized lipid metabolism and mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in UFPs. Previous AOPs, which only focused on phenotypic changes in neurotoxicity upon PM exposure, we for the first time propose AOP framework in which PM2.5 and UFPs may activate pathway cascade reactions, resulting in adverse outcomes associated with neurotoxicity. Our toxicity pathway-based approach not only advances risk assessment for PM-induced neurotoxicity but shines a spotlight on constructing AOP frameworks for new chemicals.


Asunto(s)
Rutas de Resultados Adversos , Contaminantes Atmosféricos , Material Particulado , Material Particulado/toxicidad , Contaminantes Atmosféricos/toxicidad , Humanos , Síndromes de Neurotoxicidad , Transducción de Señal/efectos de los fármacos , Tamaño de la Partícula , Medición de Riesgo
2.
Environ Int ; 190: 108841, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917626

RESUMEN

OBJECTIVES: Evidence on the link between long-term ambient particulate matter (PM) exposures and childhood sleep disorders were scarce. We examined the associations between long-term exposures to PM2.5 and PM1 (PM with an aerodynamic equivalent diameter <2.5 µm and <1 µm, respectively) with sleep disorders in children. METHODS: We performed a population-based cross-sectional survey in 177,263 children aged 6 to 18 years in 14 Chinese cities during 2012-2018. A satellite-based spatiotemporal model was employed to estimate four-year annual average PM2.5 and PM1 exposures at residential and school addresses. Parents or guardians completed a checklist using the Sleep Disturbance Scale for Children. We estimated the associations using generalized linear mixed models with adjustment for characteristics of children, parents, and indoor environments. RESULTS: Long-term PM2.5 and PM1 exposures were positively associated with odds of sleep disorders for almost all domains. For example, increments in PM2.5 and PM1 per 10 µg/m3 were associated with odds ratios of global sleep disorder of 1.24 (95 % confidence interval [CI]: 1.14, 1.35) and 1.31 (95 %CI: 1.18, 1.46), respectively. Similar results were observed for subtypes of sleep disorder. These associations were heterogeneous regionally, with stronger associations among children residing in southeast region than in northeast and northwest regions. Moreover, larger estimates of PM1 were found than that of PM2.5 in southeast region. CONCLUSION: Long-term PM2.5 and PM1 exposures are independently associated with higher risks of childhood sleep disorders, and these associations vary by geographical region.


Asunto(s)
Contaminantes Atmosféricos , Exposición a Riesgos Ambientales , Material Particulado , Trastornos del Sueño-Vigilia , Humanos , Material Particulado/análisis , China/epidemiología , Niño , Adolescente , Trastornos del Sueño-Vigilia/epidemiología , Masculino , Exposición a Riesgos Ambientales/estadística & datos numéricos , Femenino , Estudios Transversales , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos
3.
J Hazard Mater ; 470: 134226, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593665

RESUMEN

Contaminants may induce immune response polarization, leading to immune diseases, such as allergic diseases. Evidence concerning the effects of chlorinated paraffins (CPs), an emerging persistent organic pollutant, on immune system is scarce, particularly for epidemiological evidence. This study explores the association between CPs exposure and allergic diseases (allergic rhinitis, atopic eczema, and allergic conjunctivitis) in children and adolescents in the Pearl River Delta (PRD) in China. Herein, 131,304 children and adolescents from primary and secondary schools in the PRD were included and completed the questionnaire survey. The particulate matter (PM) samples were collected in the PRD and the PM2.5-bound CP concentrations were analyzed. In the multivarious adjustment mixed effect model (MEM), an IQR increase in ∑CPs was significantly associated with allergic diseases (rhinitis, eczema, and conjunctivitis) with the estimated odds ratios (ORs) for 1.11 (95% CI: 1.10, 1.13), 1.17 (95% CI: 1.15, 1.19), and 1.82 (95% CI: 1.76, 1.88), respectively. Interaction analysis indicated that overweight and obese individuals might have greater risk. Similar effect estimates were observed in several sensitivity analyses. This study provided epidemiological evidence on the immunotoxicity of CPs. More studies to confirm our findings and investigate mechanisms are needed.


Asunto(s)
Parafina , Humanos , Adolescente , Niño , Masculino , Femenino , China/epidemiología , Parafina/toxicidad , Parafina/análisis , Hipersensibilidad/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , Hidrocarburos Clorados/toxicidad , Hidrocarburos Clorados/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Material Particulado/toxicidad , Material Particulado/análisis , Dermatitis Atópica/epidemiología , Dermatitis Atópica/inducido químicamente , Rinitis Alérgica/epidemiología , Rinitis Alérgica/inducido químicamente
4.
Sci Total Environ ; 921: 171224, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402960

RESUMEN

The emissions and exposure limits for airborne PM0.1 are lacking, with limited scientific data for toxicity. Therefore, we continuously monitored and calculated the number and mass concentrations of airborne PM0.1 in December 2017, January 2018 and March 2018 during the high pollution period in Guangzhou. We collected PM0.1 from the same period and analyzed their chemical components. A549, THP-1 and A549/THP-1 co-cultured cells were selected for exposure to PM0.1, and evaluated for toxicological responses. Our aims are to 1) measure and analyze the number and mass concentrations, and chemical components of PM0.1; 2) evaluate and compare PM0.1 toxicity to different airway cells models at different time points. Guangzhou had the highest mass concentration of PM0.1 in December 2017, while the number concentration was the lowest. Chemical components in PM0.1 vary significantly at different time periods, and the correlation between the chemical composition or source of PM0.1 and the mass and number concentration of PM0.1 was dissimilar. Exposure to PM0.1 disrupted cell membranes, impaired mitochondrial function, promoted the expression of inflammatory mediators, and interfered with DNA replication in the cell cycle. The damage caused by exposure to PM0.1 at different times exhibited variations across different types of cells. PM0.1 in March 2018 stimulated co-cultured cells to secrete more inflammatory mediators, and CMA was significantly related to the expression of them. Our study indicates that it is essential to monitor both the mass and number concentrations of PM0.1 throughout all seasons annually, as conventional toxicological experiments and the internal components of PM0.1 may not effectively reveal the health damages caused by elevated number levels of PM0.1.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Material Particulado/toxicidad , Material Particulado/análisis , China , Mediadores de Inflamación , Tamaño de la Partícula , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA