Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38730777

RESUMEN

Titanium zirconium vanadium (TiZrV) is a widely used non-evaporable getter (NEG) material with the characteristics of a low activation temperature and a large gas absorption capacity. At present, the research on TiZrV getters mainly focuses on the thin-film state, with little research on the bulk state. In this paper, a TiZrV getter was optimized by adding Al, and the phase structure, activation properties, and gettering performance were studied. With the addition of Al, the α-Zr phase and Ti2Zr phase changed into the Ti-Zr phase and Al-Zr, Al-Ti phase. The newly generated phase promoted the diffusion of hydrogen and oxygen atoms. The activation temperature decreased significantly, as shown in the in situ XPS results. The H2 and CO gettering performance of TiZrVAl samples was promoted to 2073 cm3·s-1 and 1912.8 cm3·s-1, increased by 40.7% and 40.3%. This paper provides valuable ideas for optimizing the properties of bulk TiZrV getters.

2.
ACS Appl Mater Interfaces ; 16(22): 28896-28904, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38770712

RESUMEN

Herein, we present a novel ultrasensitive graphene field-effect transistor (GFET) biosensor based on lithium niobate (LiNbO3) ferroelectric substrate for the application of breast cancer marker detection. The electrical properties of graphene are varied under the electrostatic field, which is generated through the spontaneous polarization of the ferroelectric substrate. It is demonstrated that the properties of interface between graphene and solution are also altered due to the interaction between the electrostatic field and ions. Compared with the graphene field-effect biosensor based on the conventional Si/SiO2 gate structure, our biosensor achieves a higher sensitivity to 64.7 mV/decade and shows a limit of detection down to 1.7 fM (equivalent to 12 fg·mL-1) on the detection of microRNA21 (a breast cancer marker). This innovative design combining GFETs with ferroelectric substrates holds great promise for developing an ultrahigh-sensitivity biosensing platform based on graphene that enables rapid and early disease diagnosis.


Asunto(s)
Biomarcadores de Tumor , Técnicas Biosensibles , Neoplasias de la Mama , Grafito , MicroARNs , Niobio , Óxidos , Grafito/química , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Humanos , Niobio/química , Neoplasias de la Mama/diagnóstico , Óxidos/química , MicroARNs/análisis , Biomarcadores de Tumor/análisis , Femenino , Límite de Detección , Transistores Electrónicos
3.
Nanomaterials (Basel) ; 13(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36770565

RESUMEN

Accurate monitoring of blood glucose levels is crucial for the diagnosis of diabetes patients. In this paper, we proposed a simple "mixed-catalyzer layer" modified silicon nanowire field-effect transistor biosensor that enabled direct detection of glucose with low-charge in high ionic strength solutions. A stable screening system was established to overcome Debye screening effect by forming a porous biopolymer layer with polyethylene glycol (PEG) modified on the surface of SiNW. The experimental results show that when the optimal ratio (APTMS:silane-PEG = 2:1) modified the surface of silicon nanowires, glucose oxidase can detect glucose in the concentration range of 10 nM to 10 mM. The sensitivity of the biosensor is calculated to be 0.47 µAcm-2mM-1, its fast response time not exceeding 8 s, and the detection limit is up to 10 nM. This glucose sensor has the advantages of high sensitivity, strong specificity and fast real-time response. Therefore, it has a potential clinical application prospect in disease diagnosis.

4.
Micromachines (Basel) ; 15(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38258172

RESUMEN

In this paper, we report an all-dielectric metamaterial terahertz biosensor, which exhibits a high Q factor of 35 at an 0.82 resonance peak. A structure with an electromagnetically induced transparency effect was designed and fabricated to perform a Mie resonance for the terahertz response. The biosensor exhibits a limit of detection of 100 pg/mL for cytokine interleukin 2 (IL-2) and a linear response for the logarithm of the concentration of IL-2 in the range of 100 pg/mL to 1 µg/mL. This study implicates an important potential for the detection of cytokines in serum and has potential application in the clinical detection of cytokine release syndrome.

5.
Nanomaterials (Basel) ; 12(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35745409

RESUMEN

In this study, we report a pH-responsive hydrogel-modified silicon nanowire field-effect transistor for pH sensing, whose modification is operated by spin coating, and whose performance is characterized by the electrical curve of field-effect transistors. The results show that the hydrogel sensor can measure buffer pH in a repeatable and stable manner in the pH range of 3-13, with a high pH sensitivity of 100 mV/pH. It is considered that the swelling of hydrogel occurring in an aqueous solution varies the dielectric properties of acrylamide hydrogels, causing the abrupt increase in the source-drain current. It is believed that the design of the sensor can provide a promising direction for future biosensing applications utilizing the excellent biocompatibility of hydrogels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA