Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Med Chem ; 67(10): 8323-8345, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38722757

RESUMEN

Leishmaniasis is a neglected tropical disease that is estimated to afflict over 12 million people. Current drugs for leishmaniasis suffer from serious deficiencies, including toxicity, high cost, modest efficacy, primarily parenteral delivery, and emergence of widespread resistance. We have discovered and developed a natural product-inspired tambjamine chemotype, known to be effective against Plasmodium spp, as a novel class of antileishmanial agents. Herein, we report in vitro and in vivo antileishmanial activities, detailed structure-activity relationships, and metabolic/pharmacokinetic profiles of a large library of tambjamines. A number of tambjamines exhibited excellent potency against both Leishmania mexicana and Leishmania donovani parasites with good safety and metabolic profiles. Notably, tambjamine 110 offered excellent potency and provided partial protection to leishmania-infected mice at 40 and/or 60 mg/kg/10 days of oral treatment. This study presents the first account of antileishmanial activity in the tambjamine family and paves the way for the generation of new oral antileishmanial drugs.


Asunto(s)
Antiprotozoarios , Leishmania donovani , Leishmania mexicana , Animales , Relación Estructura-Actividad , Antiprotozoarios/farmacología , Antiprotozoarios/química , Antiprotozoarios/uso terapéutico , Antiprotozoarios/síntesis química , Antiprotozoarios/farmacocinética , Ratones , Leishmania donovani/efectos de los fármacos , Leishmania mexicana/efectos de los fármacos , Descubrimiento de Drogas , Humanos , Femenino , Leishmaniasis/tratamiento farmacológico , Ratones Endogámicos BALB C
3.
ACS Cent Sci ; 8(8): 1145-1158, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36032774

RESUMEN

Genomic studies and experiments with permeability-deficient strains have revealed a variety of biological targets that can be engaged to kill Gram-negative bacteria. However, the formidable outer membrane and promiscuous efflux pumps of these pathogens prevent many candidate antibiotics from reaching these targets. One such promising target is the enzyme FabI, which catalyzes the rate-determining step in bacterial fatty acid biosynthesis. Notably, FabI inhibitors have advanced to clinical trials for Staphylococcus aureus infections but not for infections caused by Gram-negative bacteria. Here, we synthesize a suite of FabI inhibitors whose structures fit permeation rules for Gram-negative bacteria and leverage activity against a challenging panel of Gram-negative clinical isolates as a filter for advancement. The compound to emerge, called fabimycin, has impressive activity against >200 clinical isolates of Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii, and does not kill commensal bacteria. X-ray structures of fabimycin in complex with FabI provide molecular insights into the inhibition. Fabimycin demonstrates activity in multiple mouse models of infection caused by Gram-negative bacteria, including a challenging urinary tract infection model. Fabimycin has translational promise, and its discovery provides additional evidence that antibiotics can be systematically modified to accumulate in Gram-negative bacteria and kill these problematic pathogens.

4.
Malar J ; 15(1): 280, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27188854

RESUMEN

BACKGROUND: The liver-stage anti-malarial activity of primaquine and other 8-aminoquinoline molecules has been linked to bio-activation through CYP 2D6 metabolism. Factors such as CYP 2D6 poor metabolizer status and/or co-administration of drugs that inhibit/interact with CYP 2D6 could alter the pharmacological properties of primaquine. METHODS: In the present study, the inhibitory potential of the selective serotonin reuptake inhibitor (SSRI) and serotonin norepinephrine reuptake inhibitor (SNRI) classes of antidepressants for CYP 2D6-mediated primaquine metabolism was assessed using in vitro drug metabolism and in vivo pharmacological assays. RESULTS: The SSRI/SNRI classes of drug displayed a range of inhibitory activities on CYP 2D6-mediated metabolism of primaquine in vitro (IC50 1-94 µM). Fluoxetine and paroxetine were the most potent inhibitors (IC50 ~1 µM) of CYP 2D6-mediated primaquine metabolism, while desvenlafaxine was the least potent (IC50 ~94 µM). The most potent CYP 2D6 inhibitor, fluoxetine, was chosen to investigate the potential pharmacological consequences of co-administration with primaquine in vivo. The pharmacokinetics of a CYP 2D6-dependent primaquine metabolite were altered upon co-administration with fluoxetine. Additionally, in a mouse malaria model, co-administration of fluoxetine with primaquine reduced primaquine anti-malarial efficacy. CONCLUSIONS: These results are the first from controlled pre-clinical experiments that indicate that primaquine pharmacological properties can be modulated upon co-incubation/administration with drugs that are known to interact with CYP 2D6. These results highlight the potential for CYP 2D6-mediated drug-drug interactions with primaquine and indicate that the SSRI/SNRI antidepressants could be used as probe molecules to address the primaquine-CYP 2D6 DDI link in clinical studies. Additionally, CYP 2D6-mediated drug-drug interactions can be considered when examining the possible causes of human primaquine therapy failures.


Asunto(s)
Antidepresivos/farmacocinética , Antimaláricos/farmacocinética , Citocromo P-450 CYP2D6/metabolismo , Interacciones Farmacológicas , Primaquina/farmacocinética , Inhibidores de Captación de Serotonina y Norepinefrina/farmacocinética , Animales , Antidepresivos/administración & dosificación , Antidepresivos/metabolismo , Antimaláricos/administración & dosificación , Antimaláricos/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Concentración 50 Inhibidora , Malaria/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Primaquina/administración & dosificación , Primaquina/metabolismo , Inhibidores de Captación de Serotonina y Norepinefrina/administración & dosificación , Inhibidores de Captación de Serotonina y Norepinefrina/metabolismo , Resultado del Tratamiento
5.
Toxicol Rep ; 3: 393-400, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28959561

RESUMEN

Protease stimulation in cultured normal human epidermal keratinocytes (NHEK) due to sulfur mustard (SM) exposure is well documented. However, the specific protease(s) stimulated by SM and the protease substrates remain to be determined. In this study, we observed that SM stimulates several proteases and the epidermal-dermal attachment protein laminin-5 is one of the substrates. We propose that following SM exposure of the skin, laminin-5 degradation causes the detachment of the epidermis from the dermis and, therefore, vesication. We utilized gelatin zymography, Western blotting, immuno-fluorescence staining, and real-time polymerase chain reaction (RT-PCR) analyses to study the SM-stimulated proteases and laminin-5 degradation in NHEK. Two major protease bands (64 kDa and 72 kDa) were observed by zymography in SM-exposed cells. Addition of serine protease inhibitor (aprotinin, 100 µM), or the metalloprotease inhibitor (amastatin, 100 µM) to NHEK cultures prior to SM exposure decreased the SM-stimulated protease bands seen by zymography. These inhibitors completely or partially prevented SM-induced laminin-5 γ2 degradation as seen by Western blotting as well as immuno-fluorescence staining. Our results from Western blotting and RT-PCR studies also indicated that the membrane-type matrix metalloproteinase-1 (MT-MM-1) may be involved in SM-induced skin blistering. To summarize, our results in the NHEK model indicate the following: (a) SM stimulates multiple proteases including serine protease(s), and metalloproteases; (b) SM decreases the level of laminin-5 γ2, which is prevented by either a serine protease inhibitor or a metalloprotease inhibitor and

6.
J Pharmacol Toxicol Methods ; 70(2): 188-94, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25150934

RESUMEN

INTRODUCTION: Malaria is a major health concern and affects over 300million people a year. Accordingly, there is an urgent need for new efficacious anti-malarial drugs. A major challenge in developing new anti-malarial drugs is to design active molecules that have preferable drug-like characteristics. These "drug-like" characteristics include physiochemical properties that affect drug absorption, distribution, metabolism, and excretion (ADME). Compounds with poor ADME profiles will likely fail in vivo due to poor pharmacokinetics and/or other drug delivery related issues. There have been numerous assays developed in order to pre-screen compounds that would likely fail in further development due to poor absorption properties including PAMPA, Caco-2, and MDCK permeability assays. METHODS: The use of cell-based permeability assays such as Caco-2 and MDCK serve as surrogate indicators of drug absorption and transport, with the two approaches often used interchangeably. We sought to evaluate both approaches in support of anti-malarial drug development. Accordingly, a comparison of both assays was conducted utilizing apparent permeability coefficient (Papp) values determined from liquid chromatography/tandem mass spectrometry (LC-MS) analyses. RESULTS: Both Caco-2 and MDCK permeability assays produced similar Papp results for potential anti-malarial compounds with low and medium permeability. Differences were observed for compounds with high permeability and compounds that were P-gp substrates. Additionally, the utility of MDCK-MDR1 permeability measurements was demonstrated in probing the role of P-glycoprotein transport in Primaquine-Chloroquine drug-drug interactions in comparison with in vivo pharmacokinetic changes. DISCUSSION: This study provides an in-depth comparison of the Caco-2 and MDCK-MDR1 cell based permeability assays and illustrates the utility of cell-based permeability assays in anti-malarial drug screening/development in regard to understanding transporter mediated changes in drug absorption/distribution.


Asunto(s)
Absorción Fisiológica , Antimaláricos/metabolismo , Antimaláricos/farmacocinética , Evaluación Preclínica de Medicamentos/métodos , Absorción Fisiológica/efectos de los fármacos , Animales , Antimaláricos/química , Células CACO-2 , Células Cultivadas , Cromatografía Liquida , Perros , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Humanos , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos C3H , Permeabilidad/efectos de los fármacos , Espectrometría de Masas en Tándem
7.
Malar J ; 12: 212, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23782898

RESUMEN

BACKGROUND: The efficacy of the 8-aminoquinoline (8AQ) drug primaquine (PQ) has been historically linked to CYP-mediated metabolism. Although to date no clear evidence exists in the literature that unambiguously assigns the metabolic pathway or specific metabolites necessary for activity, recent literature suggests a role for CYP 2D6 in the generation of redox active metabolites. METHODS: In the present study, the specific CYP 2D6 inhibitor paroxetine was used to assess its effects on the production of specific phenolic metabolites thought to be involved in PQ efficacy. Further, PQ causal prophylactic (developing liver stage) efficacy against Plasmodium berghei in CYP 2D knockout mice was assessed in comparison with a normal C57 background and with humanized CYP 2D6 mice to determine the direct effects of CYP 2D6 metabolism on PQ activity. RESULTS: PQ exhibited no activity at 20 or 40 mg/kg in CYP 2D knockout mice, compared to 5/5 cures in normal mice at 20 mg/kg. The activity against developing liver stages was partially restored in humanized CYP 2D6 mice. CONCLUSIONS: These results unambiguously demonstrate that metabolism of PQ by CYP 2D6 is essential for anti-malarial causal prophylaxis efficacy.


Asunto(s)
Antimaláricos/metabolismo , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Primaquina/metabolismo , Animales , Antimaláricos/química , Antimaláricos/farmacocinética , Antimaláricos/uso terapéutico , Hidroxilación , Malaria/tratamiento farmacológico , Malaria/parasitología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Plasmodium berghei , Primaquina/química , Primaquina/farmacocinética , Primaquina/uso terapéutico
8.
Malar J ; 12: 214, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23800033

RESUMEN

BACKGROUND: The naturally occurring alkaloid drug, quinine is commonly used for the treatment of severe malaria. Despite centuries of use, its metabolism is still not fully understood, and may play a role in the haemolytic disorders associated with the drug. METHODS: Incubations of quinine with CYPs 1A2, 2C9, 2C19, 2D6, and 3A4 were conducted, and the metabolites were characterized by accurate mass UPLC-MS(E) analysis. Reactive oxygen species generation was also measured in human erythrocytes incubated in the presence of quinine with and without microsomes. RESULTS: The metabolites 3-hydroxyquinine, 2'-oxoquininone, and O-desmethylquinine were observed after incubation with CYPs 3A4 (3-hydroxyquinine and 2'-oxoquininone) and 2D6 (O-desmethylquinine). In addition, multiple hydroxylations were observed both on the quinoline core and the quinuclidine ring system. Of the five primary abundance CYPs tested, 3A4, 2D6, 2C9, and 2C19 all demonstrated activity toward quinine, while 1A2 did not. Further, quinine produced robust dose-dependent oxidative stress in human erythrocytes in the presence of microsomes. CONCLUSIONS: Taken in context, these data suggest a CYP-mediated link between quinine metabolism and the poorly understood haemolytic condition known as blackwater fever, often associated with quinine ingestion.


Asunto(s)
Fiebre Hemoglobinúrica/etiología , Sistema Enzimático del Citocromo P-450/metabolismo , Malaria/complicaciones , Malaria/tratamiento farmacológico , Quinina/efectos adversos , Quinina/metabolismo , Cromatografía Liquida , Eritrocitos/efectos de los fármacos , Humanos , Espectrometría de Masas , Microsomas/enzimología , Microsomas/metabolismo , Especies Reactivas de Oxígeno/análisis
9.
Malar J ; 11: 259, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22856549

RESUMEN

BACKGROUND: The 8-aminoquinoline (8AQ) drug primaquine (PQ) is currently the only approved drug effective against the persistent liver stage of the hypnozoite forming strains Plasmodium vivax and Plasmodium ovale as well as Stage V gametocytes of Plasmodium falciparum. To date, several groups have investigated the toxicity observed in the 8AQ class, however, exact mechanisms and/or metabolic species responsible for PQ's haemotoxic and anti-malarial properties are not fully understood. METHODS: In the present study, the metabolism of PQ was evaluated using in vitro recombinant metabolic enzymes from the cytochrome P450 (CYP) and mono-amine oxidase (MAO) families. Based on this information, metabolite identification experiments were performed using nominal and accurate mass measurements. RESULTS: Relative activity factor (RAF)-weighted intrinsic clearance values show the relative role of each enzyme to be MAO-A, 2C19, 3A4, and 2D6, with 76.1, 17.0, 5.2, and 1.7% contributions to PQ metabolism, respectively. CYP 2D6 was shown to produce at least six different oxidative metabolites along with demethylations, while MAO-A products derived from the PQ aldehyde, a pre-cursor to carboxy PQ. CYPs 2C19 and 3A4 produced only trace levels of hydroxylated species. CONCLUSIONS: As a result of this work, CYP 2D6 and MAO-A have been implicated as the key enzymes associated with PQ metabolism, and metabolites previously identified as potentially playing a role in efficacy and haemolytic toxicity have been attributed to production via CYP 2D6 mediated pathways.


Asunto(s)
Aminoquinolinas/metabolismo , Antimaláricos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Primaquina/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Humanos , Espectrometría de Masas , Redes y Vías Metabólicas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
J Appl Toxicol ; 28(6): 759-64, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18300329

RESUMEN

The need for reliable methods to detect the nature and extent of poisoning with chemical warfare agents is evident from the recent threat of use of these agents in warfare and terrorist attacks. Sulfur mustard (SM; 2,2'-dichlorodiethyl sulfide) is an alkylating vesicant agent, which has been used as a chemical weapon in various conflicts during the 20th century. The injuries resulting from SM-exposure are mainly characterized by epithelial damage of the tissues through which it is absorbed, i.e. skin, eye and the respiratory tract. Proteins in the skin mostly affected by SM-exposure are laminin-5 and integrin alpha6beta4. Laminin-5 constitutes the anchoring filaments and binds the transmembrane protein integrin alpha6beta4. Recent studies have shown that SM alkylation causes a significant reduction of laminin-5, disruption of alpha6beta4 integrin and decreases the expression of integrin alpha6 and beta4 subunits, therefore, leads to destabilization of dermal-epidermal attachments and potentiates vesication. This study established a unique immunochromatographic detection method (strip assay) to detect the degradation of laminin-5 in SM-exposed NHEK (normal human epidermal keratinocytes) extract. This method may serve as a rapid SM-exposure diagnostic/screening procedure that could be applied directly to skin extracts of individuals who have supposedly been exposed to SM.


Asunto(s)
Sustancias para la Guerra Química/toxicidad , Queratinocitos/metabolismo , Laminina/metabolismo , Gas Mostaza/toxicidad , Alquilantes/toxicidad , Células Cultivadas , Células Epidérmicas , Epidermis/efectos de los fármacos , Epidermis/metabolismo , Oro Coloide , Humanos , Inmunoquímica , Queratinocitos/efectos de los fármacos
11.
Exp Dermatol ; 17(1): 49-56, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18095945

RESUMEN

Laminin-5, a heterotrimer of laminin alpha3, beta3 and gamma2 subunits, is a component of epithelial cell basement membranes. Laminin-5 functions as a ligand of the alpha3beta1 and alpha6beta4 integrins to regulate cell adhesion, migration and morphogenesis. In the skin, laminin-5 facilitates the assembly of basement membranes; thus it is essential for a stable attachment of the epidermis to the dermis and recovery of damaged skin. Sulphur mustard (SM), also known as mustard gas, is a vesicant that has been employed as a chemical weapon in various conflicts during the twentieth century. Skin exposure to SM results in fluid-filled blisters; proposed mechanisms are inflammation, protease stimulation, basal cell death and separation of the epidermis from the dermis apparently because of the degradation of attachment proteins like laminin-5. Therefore, we investigated the effects of SM exposure on the degradation of laminin-5 and its three subunits, alpha3, beta3 and gamma2 by exposing normal human epidermal keratinocytes (NHEK) to SM (0-300 microM, 1-24 h). We found that SM degraded laminin-5 and its two subunits beta3 and gamma2, but not alpha3. Preincubation of cells with a serine protease inhibitor (PMSF), or a metalloprotease inhibitor (1,10-phenanthroline) prior to SM exposure partially prevented SM-induced degradation of laminin-5 subunits, beta3 and gamma2. Specificity studies showed that the degradation of laminin-5 gamma2 was due to a bifunctional mustard compound such as SM, but not due to the other alkylating agents tested. Our results support that laminin-5 degradation is an important mechanism of SM injury as well as a useful biomarker of SM exposure. The knowledge of the mechanisms of laminin-5 degradation in SM-exposed NHEK has potential application in developing cutaneous therapeutics against SM.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Fármacos Dermatológicos/farmacología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Gas Mostaza/farmacología , Biomarcadores/metabolismo , Células Cultivadas , Inhibidores de Cisteína Proteinasa/farmacología , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Queratinocitos/citología , Laminina/metabolismo , Leucina/análogos & derivados , Leucina/farmacología , Fenantrolinas/farmacología , Inhibidores de Proteasas/farmacología , Inhibidores de Serina Proteinasa/farmacología , Kalinina
12.
J Neurochem ; 83(5): 1094-102, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12437580

RESUMEN

The degeneration of nigral dopamine neurons in Parkinson's disease (PD) reportedly involves a defect in brain mitochondrial complex I in association with the activation of nuclear factor-kappaB (NF-kappaB) and caspase-3. To elucidate molecular mechanisms possibly linking these events, as well as to evaluate the neuroprotective potential of the cyclopentenone prostaglandin A1 (PGA1), an inducer of heat shock proteins (HSPs), we exposed human dopaminergic SH-SY5Y cells to the complex I inhibitor rotenone. Dose-dependent apoptosis was preceded by the nuclear translocation of NF-kappaB and then the activation of caspase-3 over the ensuing 24 h. PGA1 increased the expression of HSP70 and HSP27 and protected against rotenone-induced apoptosis, without increasing necrotic death. PGA1 blocked the rotenone-induced nuclear translocation of NF-kappaB and attenuated, but did not abolish, the caspase-3 elevation. Unexpectedly, the caspase-3 inhibitor, Ac-DEVD.CHO (DEVD), at a concentration that completely prevented the caspase-3 elevation produced by rotenone, failed to protect against apoptosis. These results suggest that complex I deficiency in dopamine cells can induce apoptosis by a process involving early NF-kappaB nuclear translocation and caspase-3 activation. PGA1 appears to protect against rotenone-induced cell death by inducing HSPs and blocking nuclear translocation of NF-kappaB in a process that attenuates caspase-3 activation, but is not mediated by its inhibition.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas de Choque Térmico , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Prostaglandinas A/farmacología , Rotenona/toxicidad , Transporte Activo de Núcleo Celular/efectos de los fármacos , Caspasa 3 , Inhibidores de Caspasas , Caspasas/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Proteínas de Choque Térmico HSP27 , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares , FN-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Neuroblastoma/metabolismo , Neuronas/citología , Neuronas/metabolismo , Desacopladores/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA