Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Nat Prod Res ; : 1-6, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853409

RESUMEN

Activation of silencing gene clusters is an important way to discover structurally novel compounds. In this study, three undescribed compounds were obtained from an engineered strain of Streptomyces sp. S35-LAL1. They include a polysubstituted cyclopentane with an unprecedented 10-carbon skeleton (1) and two glycerol esters (2 and 3). The structures of compounds 1-3 were elucidated through analysis of their spectroscopic data including 1D, 2D NMR, optical rotation, and electronic circular dichroism (ECD).

2.
Nat Commun ; 15(1): 3002, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589410

RESUMEN

The development of closed-loop recycling polymers that exhibit excellent performance is of great significance. Sulfur-rich polymers possessing excellent optical, thermal, and mechanical properties are promising candidates for chemical recycling but lack efficient synthetic strategies for achieving diverse structures. Herein, we report a universal synthetic strategy for producing polytrithiocarbonates, a class of sulfur-rich polymers, via the polycondensation of dithiols and dimethyl trithiocarbonate. This strategy has excellent compatibility with a wide range of monomers, including aliphatic, heteroatomic, and aromatic dithiols enabling the synthesis of polytrithiocarbonates with diverse structures. The present synthesis strategy offers a versatile platform for the construction of thermoplastics, elastomers, and vitrimers. Notably, these polytrithiocarbonates can be easily depolymerized via solvolysis into the corresponding monomers, which can be repolymerized to virgin polymers without changing the material properties.

3.
Fitoterapia ; 175: 105970, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653340

RESUMEN

Eleven new highly oxygenated eremophilane-type sesquiterpenoids were isolated from the whole plant of Synotis solidaginea, including two pairs of C-8 S/R epimers. The structures of the new compounds were elucidated on the basis of detailed spectroscopic analysis and the absolute configurations of 1 and 9 were confirmed by single-crystal X-ray crystallography using Cu Kα radiation. All the isolates were tested for the inhibition of LPS-stimulated NO production in macrophage-like mouse monocytic leukemia RAW264.7 cells. Compound 1 exhibited weak inhibitory effects with an IC50 of 71.2 µM.


Asunto(s)
Óxido Nítrico , Fitoquímicos , Sesquiterpenos , Ratones , Animales , Células RAW 264.7 , Estructura Molecular , Óxido Nítrico/metabolismo , Sesquiterpenos/farmacología , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/química , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , China , Sesquiterpenos Policíclicos/farmacología , Sesquiterpenos Policíclicos/aislamiento & purificación
4.
Plant Physiol ; 195(3): 1995-2015, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38507576

RESUMEN

Grapevine (Vitis vinifera L.) incurs severe quality degradation and yield loss from powdery mildew, a major fungal disease caused by Erysiphe necator. ENHANCED DISEASE RESISTANCE1 (EDR1), a Raf-like mitogen-activated protein kinase kinase kinase, negatively regulates defense responses against powdery mildew in Arabidopsis (Arabidopsis thaliana). However, little is known about the role of the putatively orthologous EDR1 gene in grapevine. In this study, we obtained grapevine VviEDR1-edited lines using CRISPR/Cas9. Plantlets containing homozygous and bi-allelic indels in VviEDR1 developed leaf lesions shortly after transplanting into the soil and died at the seedling stage. Transgenic plants expressing wild-type VviEDR1 and mutant Vviedr1 alleles as chimera (designated as VviEDR1-chi) developed normally and displayed enhanced resistance to powdery mildew. Interestingly, VviEDR1-chi plants maintained a spatiotemporally distinctive pattern of VviEDR1 mutagenesis: while almost no mutations were detected from terminal buds, ensuring normal function of the apical meristem, mutations occurred in young leaves and increased as leaves matured, resulting in resistance to powdery mildew. Further analysis showed that the resistance observed in VviEDR1-chi plants was associated with callose deposition, increased production of salicylic acid and ethylene, H2O2 production and accumulation, and host cell death. Surprisingly, no growth penalty was observed with VviEDR1-chi plants. Hence, this study demonstrated a role of VviEDR1 in the negative regulation of resistance to powdery mildew in grapevine and provided an avenue for engineering powdery mildew resistance in grapevine.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad , Mutación , Enfermedades de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Vitis , Vitis/genética , Vitis/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Mutación/genética , Ascomicetos/fisiología , Ascomicetos/patogenicidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Erysiphe/genética , Regulación de la Expresión Génica de las Plantas , Ácido Salicílico/metabolismo , Sistemas CRISPR-Cas
5.
Arch Microbiol ; 206(2): 63, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38217700

RESUMEN

During the investigations of macrofungi resources in Zhejiang Province, China, an interesting wood rot fungus was collected. Based on morphological and molecular phylogenetic studies, it is described as a new species, Anthracophyllum sinense. A. sinense is characterized by its sessile, charcoal black and pleurotoid pileus, sparse lamellae occasionally branching, clavate basidia with long sterigmata [(3-)6-7(-8) µm], and non-heteromorphous cystidia. A. sinense establishes a separate lineage close to A. archeri and A. lateritium in the phylogenetic tree.


Asunto(s)
Agaricales , Basidiomycota , Filogenia , ADN de Hongos/genética , China
6.
Acta Pharmacol Sin ; 45(5): 926-944, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38286832

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with progressive loss of motor neurons in the spinal cord, cerebral cortex and brain stem. ALS is characterized by gradual muscle atrophy and dyskinesia. The limited knowledge on the pathology of ALS has impeded the development of therapeutics for the disease. Previous studies have shown that autophagy and astrocyte-mediated neuroinflammation are involved in the pathogenesis of ALS, while 5HTR2A participates in the early stage of astrocyte activation, and 5HTR2A antagonism may suppress astrocyte activation. In this study, we evaluated the therapeutic effects of desloratadine (DLT), a selective 5HTR2A antagonist, in human SOD1G93A (hSOD1G93A) ALS model mice, and elucidated the underlying mechanisms. HSOD1G93A mice were administered DLT (20 mg·kg-1·d-1, i.g.) from the age of 8 weeks for 10 weeks or until death. ALS onset time and lifespan were determined using rotarod and righting reflex tests, respectively. We found that astrocyte activation accompanying with serotonin receptor 2 A (5HTR2A) upregulation in the spinal cord was tightly associated with ALS-like pathology, which was effectively attenuated by DLT administration. We showed that DLT administration significantly delayed ALS symptom onset time, prolonged lifespan and ameliorated movement disorders, gastrocnemius injury and spinal motor neuronal loss in hSOD1G93A mice. Spinal cord-specific knockdown of 5HTR2A by intrathecal injection of adeno-associated virus9 (AAV9)-si-5Htr2a also ameliorated ALS pathology in hSOD1G93A mice, and occluded the therapeutic effects of DLT administration. Furthermore, we demonstrated that DLT administration promoted autophagy to reduce mutant hSOD1 levels through 5HTR2A/cAMP/AMPK pathway, suppressed oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway, and inhibited astrocyte neuroinflammation through 5HTR2A/cAMP/AMPK/NF-κB/NLRP3 pathway in the spinal cord of hSOD1G93A mice. In summary, 5HTR2A antagonism shows promise as a therapeutic strategy for ALS, highlighting the potential of DLT in the treatment of the disease. DLT as a 5HTR2A antagonist effectively promoted autophagy to reduce mutant hSOD1 level through 5HTR2A/cAMP/AMPK pathway, suppressed oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway, and inhibited astrocytic neuroinflammation through 5HTR2A/cAMP/AMPK/NF-κB/NLRP3 pathway in the spinal cord of hSOD1G93A mice.


Asunto(s)
Esclerosis Amiotrófica Lateral , Astrocitos , Loratadina , Loratadina/análogos & derivados , Ratones Transgénicos , Médula Espinal , Superóxido Dismutasa-1 , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Médula Espinal/metabolismo , Ratones , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Loratadina/farmacología , Loratadina/uso terapéutico , Humanos , Receptor de Serotonina 5-HT2A/metabolismo , Modelos Animales de Enfermedad , Masculino , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/uso terapéutico , Ratones Endogámicos C57BL
7.
J Exp Clin Cancer Res ; 42(1): 290, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37915048

RESUMEN

BACKGROUND: Invasion and metastasis are the main causes of unfavourable prognosis in patients diagnosed with bladder cancer. The efficacy of immunotherapy in bladder cancer remains suboptimal due to the presence of an immunosuppressive microenvironment. The novel protein family with sequence similarity 171B (FAM171B) has been identified, but its precise role and mechanism in bladder cancer remain unclear. METHODS: In this study, we conducted an analysis to investigate the associations between FAM171B expression and the prognosis and clinicopathological stage of bladder cancer. To this end, we utilized RNA sequencing data from the TCGA and GEO databases, as well as tumor tissue specimens obtained from our clinical centre. RNA sequencing analysis allowed us to examine the biological function of FAM171B at the transcriptional level in bladder cancer cells. Additionally, we used immunoprecipitation and mass spectrometry to identify the protein that interacts with FAM171B in bladder cancer cells. The effects of FAM171B on modulating tumor-associated macrophages (TAMs) and vimentin-mediated tumor progression, as well as the underlying mechanisms, were clarified by phalloidin staining, immunofluorescence staining, ELISA, RNA immunoprecipitation, flow cytometry and a bladder cancer graft model. RESULTS: FAM171B expression exhibits strong positive correlation with poor survival outcomes and advanced clinicopathological stages in patients with bladder cancer. FAM171B significantly promoted bladder cancer growth and metastasis, accompanied by TAM accumulation in the microenvironment, in vivo and in vitro. Through studies of the molecular mechanism, we found that FAM171B contributes to tumor progression by stabilizing vimentin in the cytoplasm. Additionally, our research revealed that FAM171B enhances the splicing of CCL2 mRNA by interacting with heterogeneous nuclear ribonucleoprotein U (HNRNPU), ultimately leading to increased recruitment and M2 polarization of TAMs. CONCLUSIONS: In this study, we identified FAM171B as a potent factor that promotes the progression of bladder cancer. These findings establish a solid theoretical foundation for considering FAM171B as a potential diagnostic and therapeutic biomarker for bladder cancer.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Humanos , Biomarcadores , Quimiocina CCL2/metabolismo , Pronóstico , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria/patología , Vimentina/genética
8.
Cancer Cell Int ; 23(1): 217, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37752545

RESUMEN

OBJECTIVE: Herein, we aimed at exploring the FAP expression in clear cell renal cell carcinoma (ccRCC) along with its clinical implication. METHODS: Using computational tools analysis of different freely accessible gene databases, the expression pattern, clinical importance, co-expressed genes, and signaling pathways of FAP in ccRCC were thoroughly investigated. FAP expression was examined in clinical ccRCC specimens through qRT-PCR, western blotting and immunohistochemistry. Furthermore, in vitro and in vivo experiments were carried out using flow cytometry, CCK-8, wound-healing and Transwell assays, as well as xenograft tumor model, respectively. RESULTS: FAP levels were found to be significantly elevated in ccRCC based on bioinformatic data from public databases. Patients who exhibited higher expression levels of FAP had poorer prognoses, according to Kaplan-Meier analysis of survival data. In addition, diagnostic and prognostic value of FAP in ccRCC was figured out by ROC curve and prognostic nomogram model. In vitro study revealed that the over-expression FAP accelerated cell proliferation, migration as well as invasion, and suppressed cell apoptosis, but silencing of FAP had the opposite effect. FAP suppression reduced the PI3K/AKT/mTOR pathway's stimulation, whereas FAP up-regulation increased the stimulation of the pathway. Blocking the PI3K/AKT/mTOR signaling pathway with the dual PI3K/mTOR inhibitor BEZ235 repressesed cancer-promoting effect of FAP. Additionally, we found that the downregulation of FAP was effective at slowing tumor progression in vivo. CONCLUSION: It is possible that FAP could be a reliable biomarker for the diagnosis and prognosis of ccRCC because of its role in the ccRCC progression via triggering the PI3K/AKT/mTOR signaling pathway.

9.
World J Surg Oncol ; 21(1): 255, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37605239

RESUMEN

BACKGROUND: Gremlin-1 (GREM1) is a protein closely related to tumor growth, although its function in bladder cancer (BCa) is currently unknown. Our first objective was to study the GREM1 treatment potential in BCa. METHODS: BCa tissue samples were collected for the detection of GREM1 expression using Western blot analysis and Immunofluorescence staining. Association of GREM1 expression with clinicopathology and prognosis as detected by TCGA (The Cancer Genome Atlas) database. The functional investigation was tested by qRT-PCR, western blot analysis, CCK-8, cell apoptosis, wound healing, and transwell assays. The interaction between GREM1 and the downstream PI3K/AKT signaling pathway was assessed by Western blot analysis. RESULTS: GREM1 exhibited high expression in BCa tissues and was linked to poor prognosis. Stable knockdown of GREM1 significantly inhibited BCa cell (T24 and 5637) proliferation, apoptosis, migratory, invasive, as well as epithelial-mesenchymal transition (EMT) abilities. GREM1 promotes the progression in BCa via PI3K/AKT signaling pathway. CONCLUSION: Findings demonstrate that the progression-promoting effect of GREM1 in BCa, providing a novel biomarker for BCa-targeted therapy.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Neoplasias de la Vejiga Urinaria , Humanos , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt , Pronóstico , Biomarcadores , Neoplasias de la Vejiga Urinaria/genética , Péptidos y Proteínas de Señalización Intercelular/genética
10.
Int Immunopharmacol ; 121: 110427, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37290329

RESUMEN

BACKGROUND AND OBJECTIVE: Ischemia/reperfusion injury (IRI), which is characterized by testicular torsion and causes permanent impairment of spermatogenic function, is linked with pyroptosis. Studies have implicated endogenous small non-coding RNAs in IRI development across various organs. In this study, we elucidated the mechanism underlying miR-195-5p's action in regulating pyroptosis in testicular IRI. METHODS: We established two models, namely a testicular torsion/ detorsion (T/D) mouse model and an oxygen-glucose deprivation/reperfusion (OGD/R)-treated germ cell model. Hematoxylin and eosin staining was performed to evaluate the testicular ischemic injury. The expression of pyroptosis-related proteins and reactive oxygen species production in testis tissues were detected using Western blotting, quantitative real-time PCR, malondialdehyde and superoxide dismutase assay kits and immunohistochemistry. Cell viability and cytotoxicity were evaluated using CCK-8 and LDH assays, whereas expression patterns of inflammatory proteins were measured using ELISA, immunofluorescence, and western blot assays. miR-195-5p interaction with PELP1 was validated by conducting the luciferase enzyme reporter test. RESULTS: Pyroptosis-related proteins NLRP3, GSDMD, IL-1ß, and IL-18 were significantly upregulated following testicular IRI. A similar pattern was observed in the OGD/R model. miR-195-5p was significantly downregulated in mouse IRI testis tissue and OGD/R-treated GC-1 cells. Notably, miR-195-5p downregulation promoted whereas its upregulation attenuated pyroptosis in OGD/R-treated GC-1 cells. Furthermore, we found that PELP1 is a miR-195-5p target. miR-195-5p attenuated pyroptosis in GC-1 cells by inhibiting PELP1 expression during OGD/R, and this protective effect was blocked upon miR-195-5p downregulation. Collectively, these results indicated that miR-195-5p inhibits testicular IRI-induced pyroptosis by targeting PELP1, suggesting that it has the potential to serve as a novel target for the future development of therapies for testicular torsion.


Asunto(s)
MicroARNs , Daño por Reperfusión , Torsión del Cordón Espermático , Animales , Humanos , Masculino , Ratones , Línea Celular , Proteínas Co-Represoras , MicroARNs/genética , MicroARNs/metabolismo , Oxígeno , Piroptosis , Daño por Reperfusión/metabolismo , Espermatogonias/metabolismo , Testículo , Factores de Transcripción
11.
Int Immunopharmacol ; 121: 110398, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37301123

RESUMEN

Sirtuin 1 (SIRT1) protein is involved in macrophage differentiation, while NOTCH signaling affects inflammation and macrophage polarization. Inflammation and macrophage infiltration are typical processes that accompany kidney stone formation. However, the role and mechanism of SIRT1 in renal tubular epithelial cell injury caused by calcium oxalate (CaOx) deposition and the relationship between SIRT1 and the NOTCH signaling pathway in this urological disorder are unclear. This study investigated whether SIRT1 promotes macrophage polarization to inhibit CaOx crystal deposition and reduce renal tubular epithelial cell injury. Public single-cell sequencing data, RT-qPCR, immunostaining approaches, and Western blotting showed decreased SIRT1 expression in macrophages treated with CaOx or exposed to kidney stones. Macrophages overexpressing SIRT1 differentiated towards the anti-inflammatory M2 phenotype, significantly inhibiting apoptosis and alleviating injury in the kidneys of mice with hyperoxaluria. Conversely, decreased SIRT1 expression in CaOx-treated macrophages triggered Notch signaling pathway activation, promoting macrophage polarization towards the pro-inflammatory M1 phenotype. Our results suggest that SIRT1 promotes macrophage polarization towards the M2 phenotype by repressing the NOTCH signaling pathway, which reduces CaOx crystal deposition, apoptosis, and damage in the kidney. Therefore, we propose SIRT1 as a potential target for preventing disease progression in patients with kidney stones.


Asunto(s)
Oxalato de Calcio , Cálculos Renales , Animales , Ratones , Oxalato de Calcio/química , Inflamación/metabolismo , Riñón/metabolismo , Cálculos Renales/química , Cálculos Renales/metabolismo , Macrófagos/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
12.
Tissue Cell ; 82: 102069, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36921491

RESUMEN

Ischemia-reperfusion injury (IRI) is a major cause of injury after testicular torsion and can lead to permanent impairment of spermatogenesis. Emodin (6-methyl-1,3,8-trihydroxyanthraquinone) has potent anti-inflammatory effects and may be protective against IRI in various organs. Herein, we evaluated the effects of emodin on pyroptosis in spermatogenic cells and its role in the process of testicular IRI. A testicular torsion/detorsion (TTD) mouse model and an oxygen-glucose deprivation/reperfusion (OGD/R) germ cell model were established. Hematoxylin and eosin staining was performed to evaluate the testicular ischemic injury. The expression of pyroptosis-related proteins and reactive oxygen species production in testis tissues were detected using Western blotting, quantitative real-time PCR, malondialdehyde and superoxide dismutase assay kits and immunohistochemistry. Cell viability and cytotoxicity were evaluated using Cell Counting Kit-8 and lactate dehydrogenase assay kit. Enzyme-linked immunosorbent assay, immunofluorescence and immunoblotting were performed to assess inflammatory protein levels. The results revealed that pyroptosis and inflammation levels were upregulated after testicular IRI, and emodin inhibited inflammation and pyroptosis by acting on NOD-like receptor thermal protein domain-associated protein 3 (NLRP3). Emodin exerts protective effects on testicular IRI by acting on the NLRP3 signaling pathway and inhibiting IRI-mediated pyroptosis. Emodin treatment attenuated testicular IRI and inhibited pyroptosis. Inhibitory effects of emodin on pyroptosis were attributed to the inhibition of NLRP3 inflammasomes. Thus, emodin could be an alternative treatment for testicular IRI.


Asunto(s)
Emodina , Daño por Reperfusión , Torsión del Cordón Espermático , Ratones , Humanos , Masculino , Animales , Piroptosis , Testículo/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Emodina/farmacología , Torsión del Cordón Espermático/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Inflamación/metabolismo
13.
PLoS One ; 18(1): e0280022, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36603019

RESUMEN

Floral organ number is crucial for successful seed setting and mature grain development. Although some genes and signaling pathways controlling floral organ number have been studied, the underlying mechanism is complicated and requires further investigation. In this study, a floral organ number mutant was generated by the ethyl methanesulfonate treatment of the Korean japonica rice cultivar Ilpum. In the floral organ number mutant, 37% of the spikelets showed an increase in the number of floral organs, especially stamens and pistils. Histological analysis revealed that the number of ovaries was determined by the number of stigmas; spikelets with two or three stigmas contained only one ovary, whereas spikelets with four stigmas possessed two ovaries. The floral organ number mutant showed pleiotropic phenotypes including multiple grains, early flowering, short plant height, and reduced tiller number compared with the wild-type. Genetic and MutMap analyses revealed that floral organ number is controlled by a single recessive gene located between the 8.0 and 20.0 Mb region on chromosome 8. Calculation of SNP-index confirmed Os08g0299000 as the candidate gene regulating floral organ number, which was designated as FLORAL ORGAN NUMBER7 (FON7). A single nucleotide polymorphism (G to A) was discovered at the intron splicing donor site of FON7, which caused the skipping of the entire sixth exon in the mutant, resulting in the deletion of 144 bp. Furthermore, the T-DNA-tagged line displayed the same floral organ number phenotype as the fon7 mutant. These results provide valuable insight into the mechanism of floral organ differentiation and formation in rice.


Asunto(s)
Oryza , Proteínas de Plantas/metabolismo , Fenotipo , Flores , Genes Recesivos , Regulación de la Expresión Génica de las Plantas , Mutación
14.
Proc Natl Acad Sci U S A ; 119(50): e2210338119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36472959

RESUMEN

Salt stress impairs nutrient metabolism in plant cells, leading to growth and yield penalties. However, the mechanism by which plants alter their nutrient metabolism processes in response to salt stress remains elusive. In this study, we identified and characterized the rice (Oryza sativa) rice salt tolerant 1 (rst1) mutant, which displayed improved salt tolerance and grain yield. Map-based cloning revealed that the gene RST1 encoded an auxin response factor (OsARF18). Molecular analyses showed that RST1 directly repressed the expression of the gene encoding asparagine synthetase 1 (OsAS1). Loss of RST1 function increased the expression of OsAS1 and improved nitrogen (N) utilization by promoting asparagine production and avoiding excess ammonium (NH4+) accumulation. RST1 was undergoing directional selection during domestication. The superior haplotype RST1Hap III decreased its transcriptional repression activity and contributed to salt tolerance and grain weight. Together, our findings unravel a synergistic regulator of growth and salt tolerance associated with N metabolism and provide a new strategy for the development of tolerant cultivars.


Asunto(s)
Aspartatoamoníaco Ligasa , Oryza , Tolerancia a la Sal/genética , Oryza/genética , Aspartatoamoníaco Ligasa/genética , Expresión Génica
15.
Molecules ; 27(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36080331

RESUMEN

Endophytes and their elicitors can all be utilized in regulating crop biochemical qualities. However, living endophytes and their derived elicitors are always applied separately; little is known about the similarities and differences of their effects. To increase the efficiency of this system when applied in practice, the present work profiled simultaneously the metabolomes in grape cells exposed to endophytic fungi (EF) and their corresponding fungal extracts (CFE). As expected, grape cells exposed separately to different fungi, or to different fungi derived extracts, each exhibited different modifications of metabolite patterns. The metabolic profiles of certain EF- and CFE-exposed grape cells were also differently influenced to certain degrees, owing to the presence of differentially responding metabolites (DRMs). However, the detected majority proportions of coordinately responding metabolites (CRMs) in both the EF- and the CFE-exposed grape cells, as well as the significantly influenced metabolites (SIMs) which are specific to certain fungal strains, clearly indicate coordinative changes in metabolites in grape cells exposed to EF and CFEs. The coordinative changes in metabolites in EF- and CFE-treated grape cells appeared to be fungal strain-dependent. Notably, several of those fungal strain-specific CRMs and DRMs are metabolites and belong to amino acids, lipids, organic acids, phenolic acids, flavonoids, and others, which are major contributors to the biochemistry and sensory qualities of grapes and wines. This research clarifies the detailed responses of metabolites in grape cells exposed to EF and CFEs. It also demonstrates how endophytes can be selectively used in the form of extracts to produce functions as CRMs of the living fungus with increased eco-safety, or separately applied to the living microbes or elicitors to emphasize those effects related to their specifically initiated SIMs and DRMs.


Asunto(s)
Vitis , Vino , Endófitos/metabolismo , Hongos/metabolismo , Metaboloma , Vitis/metabolismo
16.
J Cosmet Dermatol ; 21(12): 7090-7099, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36099014

RESUMEN

BACKGROUND: Glycyrrhiza is one of the most widely used traditional Chinese medicines in China. Its main bioactive ingredient glycyrrhizic acid (GA) has the potential to be used as a treatment for atopic dermatitis (AD) because it has similar actions to steroids, but with relatively few side effects. AIMS: The objective of this study was to explore the potential mechanisms of GA on AD mice model. METHODS: Calcipotriol, a vitamin D3 analogue (MC903) was applied topically to establish AD mouse model. Mice were intraperitoneally administrated with 2 mg/kg dexamethasone (DEX), 25 or 50 mg/kg GA for 15 days. After mice were executed, skin tissues were collected and detected the expression levels of IL-4, IFN-γ, TNF-α and thymic stromal lymphopoietin (TSLP). The percentages of Th1, Th2, Th17, langerhans cells (LCs) in draining lymph nodes (dLNs) were measured by flow cytometry. RESULTS: Our data demonstrated that GA improved the symptoms of AD by exerting anti-inflammatory and anti-allergic functions in vivo. We found that GA treatment decreased the level of total IgE in serum, suppressed ear swelling, reduced the infiltration of mast cells in skin lesions and decreased expressions of IL-4, IFN-γ, TNF-α and TSLP in skin lesions. Furthermore, our experimental results demonstrated that GA suppressed the Th1/Th2/Th17-immune responses in the dLNs, inhibited the migration of LCs in dLNs. CONCLUSIONS: In conclusion, our findings suggested potential therapeutic effects of GA against MC903-induced AD-like skin lesions in mice.


Asunto(s)
Dermatitis Atópica , Ratones , Animales , Ácido Glicirrínico/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-4/efectos adversos , Citocinas/metabolismo , Piel , Linfopoyetina del Estroma Tímico
17.
PLoS One ; 17(8): e0268174, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35980881

RESUMEN

Cytoplasmic male sterility (CMS) is a maternally inherited trait that inhibits plants from producing or releasing viable pollen. CMS is caused by mitochondrial-nuclear interaction, and can be rescued by introducing functional nuclear restorer-of-fertility (Rf) gene. The Tetep-CMS/Rf lines were developed through successive inter-subspecific backcrosses between indica and japonica rice accessions. Phenotypic characterization of Tetep-CMS lines revealed abnormal anther dehiscence and the inability to release, while possessing functional pollen. Transverse sections of developing anthers collected from CMS plants showed connective tissue deformities and aberrant dehydration of endothecium and epidermis. Fine mapping of Rf-Tetep using a series of segregating populations, delimited the candidate region to an approximately 109 kb genomic interval between M2099 and FM07 flanking markers. Nanopore long-read sequencing and genome assembly, proceeded by gene prediction and annotation revealed 11 open reading frames (ORFs) within the candidate region, and suggest ORF6 annotated as pentatricopeptide repeat motif containing gene 1 (PPR1), as a possible candidate gene responsible for fertility restoration. This study suggests that tissue-specific abnormalities in anthers are responsible for indehiscence-based sterility, and propose that the functional Rf gene is derived from allelic variation between inter-subspecies in rice.


Asunto(s)
Oryza , Citoplasma/genética , Fertilidad/genética , Oryza/genética , Infertilidad Vegetal/genética , Polen/genética
18.
Tissue Cell ; 78: 101876, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35914339

RESUMEN

BACKGROUND: Ischemia-reperfusion injury (IRI) is the key reason of injury after testicular torsion and may eventually lead to male infertility. Oleuropein, a natural antioxidant isolated from Olea europaea, has shown beneficial effects in different models of ischemia. We evaluated the effects of oleuropein on testicular IRI and explored the underlying protective mechanisms. METHODS: A mouse testicular torsion/detorsion (T/D) model and an oxygen-glucose deprivation/reperfusion (OGD/R) germ cell model were established and treated with oleuropein. H&E staining was used to evaluate testicular pathological changes. Apoptosis and apoptosis-associated protein levels in testis tissues were assessed by TUNEL staining, immunohistochemical staining and western blot. Apoptosis levels and apoptosis-associated protein levels in GC-1 were evaluated by flow cytometry, immunofluorescence and western blot. Oxidative stress levels were assessed by malondialdehyde (MDA) and superoxide dismutase (SOD) kits. Cell viability and inflammatory protein levels were evaluated by CCK-8 assay coupled with qRT-PCR. RESULTS: Relative to the control group, SOD activity was markedly suppressed, while MDA, Bax, Caspase-3, TNF-α as well as IL-1ß levels were significantly increased in the T/D model and OGD/R model. However, all of the aforementioned alterations were relieved by oleuropein treatment. CONCLUSION: Our findings indicate that oleuropein may be a promising treatment option to attenuate testicular IRI via its anti-oxidant, anti-inflammatory as well as anti-apoptotic properties.


Asunto(s)
Daño por Reperfusión , Torsión del Cordón Espermático , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Apoptosis , Caspasa 3/metabolismo , Glucosa/metabolismo , Humanos , Inflamación/patología , Glucósidos Iridoides , Isquemia , Masculino , Malondialdehído/metabolismo , Ratones , Estrés Oxidativo , Oxígeno/metabolismo , Reperfusión , Daño por Reperfusión/metabolismo , Torsión del Cordón Espermático/complicaciones , Torsión del Cordón Espermático/tratamiento farmacológico , Torsión del Cordón Espermático/metabolismo , Superóxido Dismutasa/metabolismo , Testículo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína X Asociada a bcl-2/metabolismo
19.
Phytomedicine ; 102: 154200, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35671605

RESUMEN

BACKGROUND: Myricetin (Myr) is a flavonoid compound that exist widely in many natural plants. Myr has been proven to have multiple biological functions, including immunomodulatory and anti-inflammatory effects. PURPOSE: In this study, we investigated the therapeutic effect of Myr on calcipotriol (MC903) induced atopic dermatitis (AD) mouse model and tumor necrosis factor (TNF)-α/interferon (IFN)-γ stimulated human immortal keratinocyte line (HaCaT) in vivo and in vitro. METHODS: MC903 was applied topically to the left ears of mice to establish AD mouse model. After the AD model established successfully, the cream base, dexamethasone (DEX) cream or Myr cream were applied on the lesions of mice for 8 days. Through measuring ear thickness and scoring dermatitis severity, we evaluated the therapeutic effect of Myr, the draining lymph nodes (DLNs) and ears of the mice were collected for mechanistic study. In addition, TNF-α and IFN-γ-activated HaCaT cells were used to investigate the underlying mechanism. RESULTS: Our data demonstrated that Myr alleviated the symptoms of AD by exerting anti-inflammatory and anti-allergic functions in vivo. We found that Myr treatment suppressed ear swelling and IgE level in the serum, reduced the infiltration of mast cells in skin lesions, decreased expressions of thymus and activation regulated chemokine (TARC), IL-4, IFN-γ and thymic stromal lymphopoietin (TSLP) in ear lesions, increased the expressions of filaggrin (FLG). Furthermore, our experimental results demonstrated that Myr down-regulated the mRNA expressions of T-bet and GATA-3 in DLNs. In vitro, Myr treatment decreased MDC and TARC expressions in IFN-γ and TNF-α-induced HaCaT cells by blocking the NF-κB and STAT1 signal pathway. CONCLUSION: The present study is the first to investigate the anti-atopic effects of Myr. Our findings suggested the therapeutic effects of Myr against MC903-induced AD-like skin lesions in mice. Therefore, Myr may be a potential therapeutic agent for AD.


Asunto(s)
Dermatitis Atópica , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Quimiocinas/metabolismo , Citocinas/metabolismo , Dermatitis Atópica/inducido químicamente , Flavonoides/farmacología , Flavonoides/uso terapéutico , Queratinocitos , Ratones , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
20.
Int J Biol Macromol ; 209(Pt A): 725-736, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35421414

RESUMEN

Tripartite motif 35 (TRIM35) is a member of the tripartite motif protein family and has been recognized to play a key role in immune-inflammatory diseases. However, the role of TRIM35 in renal ischemia-reperfusion injury (IRI) remains unclear. Our study proved that knockdown of TRIM35 alleviates kidney IRI by inhibiting oxidative stress and enhancing mitochondrial fusion. In addition, our experimental results found that TRIM35 interacts with TP53-induced glycolysis and apoptosis regulator (TIGAR) and promotes the polyubiquitination of TIGAR and induces its degradation in the proteasome pathway. Furthermore, TIGAR knockdown significantly inhibited mitochondrial fusion. These results indicate that TRIM35 is a potential therapeutic target for renal IRI.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Dinámicas Mitocondriales , Monoéster Fosfórico Hidrolasas , Daño por Reperfusión , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Glucólisis , Riñón/metabolismo , Ratones , Monoéster Fosfórico Hidrolasas/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA