Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 12(1): 5, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172953

RESUMEN

BACKGROUND: Parthanatos represents a critical molecular aspect of Parkinson's disease, wherein AIMP2 aberrantly activates PARP-1 through direct physical interaction. Although AIMP2 ought to be a therapeutic target for the disease, regrettably, it is deemed undruggable due to its non-enzymatic nature and predominant localization within the tRNA synthetase multi-complex. Instead, AIMP2 possesses an antagonistic splice variant, designated DX2, which counteracts AIMP2-induced apoptosis in the p53 or inflammatory pathway. Consequently, we examined whether DX2 competes with AIMP2 for PARP-1 activation and is therapeutically effective in Parkinson's disease. METHODS: The binding affinity of AIMP2 and DX2 to PARP-1 was contrasted through immunoprecipitation. The efficacy of DX2 in neuronal cell death was assessed under 6-OHDA and H2O2 in vitro conditions. Additionally, endosomal and exosomal activity of synaptic vesicles was gauged in AIMP2 or DX2 overexpressed hippocampal primary neurons utilizing optical live imaging with VAMP-vGlut1 probes. To ascertain the role of DX2 in vivo, rotenone-induced behavioral alterations were compared between wild-type and DX2 transgenic animals. A DX2-encoding self-complementary adeno-associated virus (scAAV) was intracranially injected into 6-OHDA induced in vivo animal models, and their mobility was examined. Subsequently, the isolated brain tissues were analyzed. RESULTS: DX2 translocates into the nucleus upon ROS stress more rapidly than AIMP2. The binding affinity of DX2 to PARP-1 appeared to be more robust compared to that of AIMP2, resulting in the inhibition of PARP-1 induced neuronal cell death. DX2 transgenic animals exhibited neuroprotective behavior in rotenone-induced neuronal damage conditions. Following a single intracranial injection of AAV-DX2, both behavior and mobility were consistently ameliorated in neurodegenerative animal models induced by 6-OHDA. CONCLUSION: AIMP2 and DX2 are proposed to engage in bidirectional regulation of parthanatos. They physically interact with PARP-1. Notably, DX2's cell survival properties manifest exclusively in the context of abnormal AIMP2 accumulation, devoid of any tumorigenic effects. This suggests that DX2 could represent a distinctive therapeutic target for addressing Parkinson's disease in patients.


Asunto(s)
Enfermedad de Parkinson , Parthanatos , Animales , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteínas Nucleares/metabolismo , Peróxido de Hidrógeno , Oxidopamina , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Rotenona , Línea Celular Tumoral
2.
Prog Neurobiol ; 194: 101879, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32615146

RESUMEN

Proper brain function requires a balance between excitatory and inhibitory neuronal activity. This balance, which is disrupted in various neural disorders, ultimately depends on the functional properties of both excitatory and inhibitory neurons; however, how the physiological properties of presynaptic terminals are controlled in these neurons is largely unknown. In this study, we generated pHluorin-conjugated, synaptic vesicle-specific tracers that are preferentially expressed in excitatory or inhibitory nerve terminals. We found that synaptic vesicle recycling is ∼1.8-fold slower in inhibitory nerve terminals than excitatory nerve terminals, resulting in reduced efficacy of synaptic transmission in inhibitory presynaptic terminals during repetitive activities. Interestingly, this relative difference in trafficking efficiency is mediated by synaptic vesicle protein 2A (SV2A), which is more highly expressed in inhibitory synapses and differentially controls sorting of synaptic protein, synaptotagmin I. These findings indicate that SV2A coordinates distinct properties of synaptic vesicle recycling between excitatory and inhibitory synapses.


Asunto(s)
Glicoproteínas de Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Inhibición Neural/fisiología , Potenciales Sinápticos/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/fisiología , Animales , Animales Recién Nacidos , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Ratas , Ratas Sprague-Dawley , Vesículas Sinápticas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA