Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Front Vet Sci ; 11: 1452631, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346953

RESUMEN

Introduction: Assisted reproductive technologies (ARTs), such as intracytoplasmic sperm injection and embryo transfer, are essential for generating genetically edited monkeys. Despite their importance, ARTs face challenges in recipient selection in terms of time and the number of animals required. The potential of superovulated monkeys, commonly used as oocyte donors, to serve as surrogate mothers, remains underexplored. The study aimed to compare the efficacy of superovulated and uterine-embryo synchronized recipients of embryo transfer in cynomolgus monkeys (Macaca fascicularis). Methods: This study involved 23 cynomolgus monkeys divided into two groups-12 superovulated recipients and 11 synchronized recipients. The evaluation criteria included measuring endometrial thickness on the day of embryo transfer and calculating pregnancy and implantation rates to compare outcomes between groups. Results: The study found no statistically significant differences in endometrial thickness (superovulated: 4.48 ± 1.36 mm, synchronized: 5.15 ± 1.58 mm), pregnancy rates (superovulated: 30.8%, synchronized: 41.7%), and implantation rates (superovulated: 14.3%, synchronized: 21.9%) between the groups (p > 0.05). Conclusion: The observations indicate that superovulated recipients are as effective as synchronized recipients for embryo transfer in cynomolgus monkeys. This suggests that superovulated recipients can serve as viable options, offering an efficient and practical approach to facilitate the generation of gene-edited models in this species.

2.
J Control Release ; 375: 105-115, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39218160

RESUMEN

For the non-invasive treatment of rheumatoid arthritis (RA), a chondroitin sulfate C (CSC)-based dissolving microneedles (cMN) was prepared to deliver human adipose stem cell-derived extracellular vesicles (hASC-EV) into inflamed joints. Owing to their anti-inflammatory function, the hASC-EV-bearing cMN (EV@cMN) significantly suppressed activated fibroblast-like synoviocytes (aFLS) and M1 macrophages (M1), which are responsible for the progression of RA. In addition, EV@cMN facilitated the chondrogenic differentiation of bone marrow-derived stem cells. In mice with collagen-induced arthritis, EV@cMN efficiently delivered both hASC-EV and CSC to inflamed joints. Interestingly, pro-inflammatory cytokines in the inflamed joints were remarkably downregulated by the synergistic effect of CSC and hASC-EV. Consequently, as judged from the overall clinical score and joint swelling, EV@cMN showed an outstanding therapeutic effect, even comparable to the wild-type mice, without significant adverse effects. Overall, EV@cMN might have therapeutic potential for RA by efficiently delivering CSC and hASC-EV into the inflamed joints in a non-invasive manner.

3.
Vet Med Sci ; 10(4): e1521, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38952271

RESUMEN

BACKGROUND: Cynomolgus monkeys (Macaca fascicularis) are essential in biomedical research, including reproductive studies. However, the application of human estimated foetal weight (EFW) formulas using ultrasonography (USG) in these non-human primates is not well established. OBJECTIVES: This study aims to evaluate the applicability of human EFW formulas for estimating foetal weight in cynomolgus monkeys at approximately 130 days of gestation. METHODS: Our study involved nine pregnant cynomolgus monkeys. We measured foetal parameters, including biparietal diameter, head circumference, abdominal circumference and femur length using USG. The EFW was calculated using 11 human EFW formulas. The actual birthweight (ABW) was recorded following Cesarean section, the day after the EFW calculation. For comparing EFW and ABW, we employed statistical methods such as mean absolute percentage error (APE) and Bland-Altman analysis. RESULTS: The ABW ranged between 200.36 and 291.33 g. Among the 11 formulas, the Combs formula showed the lowest APE (4.3%) and highest correlation with ABW (p < 0.001). Notably, EFW and ABW differences for the Combs formula were ≤5% in 66.7% and ≤10% in 100% of cases. The Bland-Altman analysis supported these results, showing that all cases fell within the limits of agreement. CONCLUSIONS: The Combs formula is applicable for estimating the weight of cynomolgus monkey fetuses with USG at approximately 130 days of gestation. Our observations suggest that the Combs formula can be applied in the prenatal care and biomedical research of this species.


Asunto(s)
Peso al Nacer , Peso Fetal , Macaca fascicularis , Ultrasonografía Prenatal , Animales , Macaca fascicularis/embriología , Macaca fascicularis/fisiología , Femenino , Peso Fetal/fisiología , Embarazo , Ultrasonografía Prenatal/veterinaria , Humanos
4.
Chemosphere ; 361: 142407, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38795919

RESUMEN

Polymethylmethacrylate (PMMA) has been used in many products, such as acrylic glass, and is estimated to reach 5.7 million tons of production per year by 2028. Thus, nano-sized PMMA particles in the environment are highly likely due to the weathering process. However, information on the hazards of nanoplastics, including PMMA in mammals, especially reproductive toxicity and action mechanism, is scarce. Herein, we investigated the effect of PMMA nanoplastics on the female reproductive system of mice embryos during pre-implantation. The treated plastic particles in embryos (10, 100, and 1000 µg/mL) were endocytosed into the cytoplasm within 30 min, and the blastocyst development and indices of embryo quality were significantly decreased from at 100 µg/mL. Likewise, the transfer of nanoplastic-treated embryos at 100 µg/mL decreased the morula implantation rate on the oviduct of pseudopregnant mice by 70%, calculated by the pregnant individual, and 31.8% by the number of implanted embryos. The PMMA nanoplastics at 100 µg/mL significantly increased the cellular levels of reactive oxygen species in embryos, which was not related to the intrinsic oxidative potential of nanoplastics. This study highlights that the nanoplastics that enter systemic circulation can affect the early stage of embryos. Thus, suitable action mechanisms can be designed to address nanoplastic occurrence.


Asunto(s)
Desarrollo Embrionario , Estrés Oxidativo , Polimetil Metacrilato , Especies Reactivas de Oxígeno , Animales , Polimetil Metacrilato/química , Polimetil Metacrilato/toxicidad , Ratones , Desarrollo Embrionario/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Femenino , Especies Reactivas de Oxígeno/metabolismo , Embarazo , Nanopartículas/toxicidad , Nanopartículas/química , Blastocisto/efectos de los fármacos , Microplásticos/toxicidad
5.
Vet Med Sci ; 10(1): e1321, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227706

RESUMEN

Leiomyosarcoma, a malignant tumour originating from smooth muscle cells, has rarely been documented in non-human primates. In this case study, a 7-year-old female cynomolgus macaque (Macaca fascicularis) presented with a rapidly growing mass overlying the left elbow joint. Radiographs indicated the presence of a soft tissue neoplasm without any associated bone involvement. The mass was surgically resected. Histological and immunohistochemical analyses revealed spindle-shaped cells with eosinophilic cytoplasm that resembled smooth muscle cells, exhibiting positive immunoreactions for vimentin, desmin and smooth muscle actin and a negative reaction for pan-cytokeratin. This is the first reported case of subcutaneous leiomyosarcoma in a cynomolgus macaque and provides important insights into the incidence and characteristics of this condition in this species.


Asunto(s)
Leiomiosarcoma , Neoplasias de los Tejidos Blandos , Femenino , Animales , Macaca fascicularis , Leiomiosarcoma/diagnóstico , Leiomiosarcoma/cirugía , Leiomiosarcoma/veterinaria , Neoplasias de los Tejidos Blandos/veterinaria , Vimentina/análisis
6.
PeerJ ; 11: e16589, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130933

RESUMEN

Background: Particulate matter (PM) is a major air pollutant that affects human health worldwide. PM can pass through the skin barrier, thus causing skin diseases such as heat rash, allergic reaction, infection, or inflammation. However, only a few studies have been conducted on the cytotoxic effects of PM exposure on large-scale animals. Therefore, herein, we investigated whether and how PM affects rhesus macaque skin fibroblasts. Methods: Rhesus macaque skin fibroblasts were treated with various concentrations of PM10 (1, 5, 10, 50, and 100 µg/mL) and incubated for 24, 48, and 72 h. Then, cell viability assay, TUNEL assay, and qRT-PCR were performed on the treated cells. Further, the reactive oxygen species, glutathione, and cathepsin B levels were determined. The MTT assay revealed that PM10 (>50 µg/mL) proportionately reduced the cell proliferation rate. Results: PM10 treatment increased TUNEL-positive cell numbers, following the pro-apoptosis-associated genes (CASP3 and BAX) and tumor suppressor gene TP53 were significantly upregulated. PM10 treatment induced reactive oxidative stress. Cathepsin B intensity was increased, whereas GSH intensity was decreased. The mRNA expression levels of antioxidant enzyme-related genes (CAT, GPX1 and GPX3) were significantly upregulated. Furthermore, PM10 reduced the mitochondrial membrane potential. The mRNA expression of mitochondrial complex genes, such as NDUFA1, NDUFA2, NDUFAC2, NDUFS4, and ATP5H were also significantly upregulated. In conclusion, these results showed that PM10 triggers apoptosis and mitochondrial damage, thus inducing ROS accumulation. These findings provide potential information on the cytotoxic effects of PM10 treatment and help to understand the mechanism of air pollution-induced skin diseases.


Asunto(s)
Material Particulado , Enfermedades de la Piel , Animales , Humanos , Material Particulado/efectos adversos , Macaca mulatta/metabolismo , Catepsina B/metabolismo , Estrés Oxidativo , Apoptosis , Enfermedades de la Piel/metabolismo , Fibroblastos/química , ARN Mensajero/genética
7.
Materials (Basel) ; 15(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35955282

RESUMEN

Plasma treatment on a zirconia surface prevents bacterial contamination and maintains osteoblast activity. To assess the degree of adhesion of Porphyromonas gingivalis on a zirconia surface after non-thermal plasma (NTP) treatment, specimens were treated with plasma for 60, 300, and 600 s, after which P. gingivalis was inoculated onto the surface and incubated for 48 h. To assess osteoblast activity after NTP treatment, osteoblasts (MC3T3-E1) were dispensed onto the specimens contaminated with P. gingivalis immediately after NTP for 60 and 120 s, followed by incubation for 48, 72, and 96 h. P. gingivalis was cultured after 60 s of NTP treatment of zirconia. The NTP and control groups showed no significant difference (p = 0.91), but adhesion was significantly increased following NTP treatment for 300 s or longer (300, 600 s groups) (p < 0.05). After NTP treatment of P. gingivalis-contaminated zirconia, osteoblast activity significantly increased at 72 and 96 h (I60 and I120 s group) in the groups treated with plasma (p < 0.017). Application of NTP to dental zirconia implants for 60 s not only inhibits the proliferation of P. gingivalis, which causes peri-implantitis but also increases osseointegration on zirconia surfaces contaminated with P. gingivalis.

8.
Sci Rep ; 12(1): 4870, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35318376

RESUMEN

Northeast Asia has been suffering from dramatic increases of particulate matter (PM) since the late 1990s, and it still continues to undergo haze despite various abating regulations. In this study, we investigated aerosol-cloud-precipitation (ACP) interactions with the varied PM, and the impact of long-range transport (LRT) process on ACP in springtime was assessed in Northeast Asia. Our long-term (1995-2019) analysis of PM10 exhibited the correlation with decreases of both sunshine duration and drizzle occurrences that can be interpreted as direct and indirect aerosol effects, while cloud cover induced by the varied PM10 was found only in more than 90% cloud cover (9/10-10/10 category). The online WRF-Chem with wind-blown dust simulation indicated that cloud water was affected by secondary inorganic aerosol (SIA) formation near the surface in upwind areas dominantly, whereas, along the LRT pathway, cloud water perturbation altitudes were increased quasi-linearly toward downward between 1 and 3 km. The gas-to-particle conversion ratios of sulfur ([SO42-]/[SO2 + SO42-]) and nitrogen ([NO3-]/[NO2 + NO3-]) both remain aloft long at the same vertical levels of most perturbed cloud altitude enough to be transported over long distance in springtime. Formations of sulfate and nitrate showed different ACP interaction timing; distinctive shifts in the ratios observed at the exit (Shanghai-Yellow Sea) by nitrate, and entrance areas (Seoul-Tokyo) by sulfate along the LRT pathway, respectively, with higher ratios of 0.8 or more in springtime. Our results indicate that ACP processes have been enhanced at a LRT-related altitude with different SIA production timings that can be considered in species-specific springtime PM abatements over Northeast Asia.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente/métodos , Retroalimentación , Nitratos/análisis , Material Particulado/análisis , Sulfatos/análisis , Agua/análisis
9.
Cell Cycle ; 20(2): 225-235, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33397186

RESUMEN

WHAMM (WAS Protein Homolog Associated with Actin, Golgi Membranes, and Microtubules) is involved in Golgi membrane association, microtubule binding, and actin nucleation as a nucleation-promoting factor, which activates the actin-related protein 2/3 complex (the Arp2/3 complex). However, the role of WHAMM in mammalian oocyte maturation is poorly understood. The presence of WHAMM mRNA and protein during all stages of mouse oocyte maturation has been verified. It is mainly co-localized with the actin cage permeating the spindle during mouse oocyte maturation. Through the knockdown of WHAMM, we confirmed that it regulates spindle formation and affects the localization of the microtubule-organizing center (MTOC) during the early stages of spindle formation. Moreover, depletion of WHAMM impaired the formation of the spindle actin and chromosome alignment, which might be the cause of chromosomal aneuploidy and abnormal, asymmetric division. Treatment with brefeldin A (BFA), an inhibitor of vesicle transport from the endoplasmic reticulum (ER) to the Golgi apparatus, induced abnormal and dispersed localization of WHAMM. Taken together, these findings show that WHAMM is an essential component of the actin cytoskeleton machinery and plays a crucial role in oocyte maturation, presumably by controlling the formation of spindles with normal length by activating the formation of the spindle actin via the Arp2/3 complex.


Asunto(s)
Actinas/metabolismo , Oocitos/metabolismo , Polimerizacion , Huso Acromático/metabolismo , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Ratones , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Oogénesis/fisiología
10.
Front Cell Dev Biol ; 8: 602097, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324650

RESUMEN

Particulate matter (PM) is a general atmospheric pollutant released into the air by an anthropogenic and naturally derived mixture of substances. Current studies indicate that fine dust can result in different health defects, including endothelial dysfunction, asthma, lung cancer, cardiovascular diseases, uterine leiomyoma, deterioration in sperm quality, and overall birth impairment. However, the most prominent effects of PM10 (diameter < 10 µM) exposure on the female reproductive system, especially with respect to oocyte maturation, remain unclear. In the present study, maturing mouse oocytes were treated with PM10 and the phenotypes of the resulting toxic effects were investigated. Exposure to PM10 led to impairment of maturation capacity by inducing cell cycle arrest and blocking normal polar body extrusion during in vitro maturation and activation of fertilization of mouse oocytes. Additionally, defects in tubulin formation and DNA alignment were observed in PM10-treated oocytes during metaphase I to anaphase/telophase I transition. Moreover, PM10 induced reactive oxygen species generation, mitochondrial dysfunction, DNA damage, and early apoptosis. Taken together, these results indicate that PM10 exposure leads to a decline in oocyte quality and affects the subsequent embryonic development potential of mammalian oocytes.

11.
In Vivo ; 34(4): 1823-1833, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32606152

RESUMEN

BACKGROUND/AIM: Picrasma quassioides (P. quassioides) is used in traditional Asian medicine widely for the treatment of anemopyretic cold, eczema, nausea, loss of appetite, diabetes mellitus, hypertension etc. In this study we aimed to understand the effect of P. quassioides ethanol extract on SiHa cervical cancer cell apoptosis. MATERIALS AND METHODS: The P. quassioides extract-induced apoptosis was analyzed using the MTT assay, fluorescence microscopy, flow cytometry and western blotting. RESULTS: P. quassioides extract induced cellular apoptosis by increasing the accumulation of cellular and mitochondrial reactive oxygen species (ROS) levels and inhibiting ATP synthesis. Pretreatment with N-Acetylcysteine (NAC), a classic antioxidant, decreased the intracellular ROS production and inhibited apoptosis. In addition, the P38 MAPK signaling pathway is a key in the apoptosis of SiHa cells induced by the P. quassioides extract. CONCLUSION: The P. quassioides extract exerts its anti-cancer properties on SiHa cells through ROS-mitochondria axis and P38 MAPK signaling. Our data provide a new insight for P. quassioides as a therapeutic strategy for cervical cancer treatment.


Asunto(s)
Picrasma , Neoplasias del Cuello Uterino , Apoptosis , Femenino , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Picrasma/metabolismo , Especies Reactivas de Oxígeno , Transducción de Señal , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
12.
Asian-Australas J Anim Sci ; 33(10): 1579-1589, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32054159

RESUMEN

OBJECTIVE: This study was conducted to investigate the roles of LIM kinases (LIMK1 and LIMK2) during porcine early embryo development. We checked the mRNA expression patterns and localization of LIMK1/2 to evaluate their characterization. We further explored the function of LIMK1/2 in developmental competence and their relationship between actin assembly and cell junction integrity, specifically during the first cleavage and compaction. METHODS: Pig ovaries were transferred from a local slaughterhouse within 1 h and cumulus oocyte complexes (COCs) were collected. COCs were matured in in vitro maturation medium in a CO2 incubator. Metaphase II oocytes were activated using an Electro Cell Manipulator 2001 and microinjected to insert LIMK1/2 dsRNA into the cytoplasm. To confirm the roles of LIMK1/2 during compaction and subsequent blastocyst formation, we employed a LIMK inhibitor (LIMKi3). RESULTS: LIMK1/2 was localized in cytoplasm in embryos and co-localized with actin in cell-to-cell boundaries after the morula stage. LIMK1/2 knockdown using LIMK1/2 dsRNA significantly decreased the cleavage rate, compared to the control group. Protein levels of E-cadherin and ß-catenin, present in adherens junctions, were reduced at the cell-to-cell boundaries in the LIMK1/2 knockdown embryos. Embryos treated with LIMKi3 at the morula stage failed to undergo compaction and could not develop into blastocysts. Actin intensity at the cortical region was considerably reduced in LIMKi3-treated embryos. LIMKi3-induced decrease in cortical actin levels was attributed to the disruption of adherens junction and tight junction assembly. Phosphorylation of cofilin was also reduced in LIMKi3-treated embryos. CONCLUSION: The above results suggest that LIMK1/2 is crucial for cleavage and compaction through regulation of actin organization and cell junction assembly.

13.
In Vivo ; 33(4): 999-1010, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31280188

RESUMEN

Infrastructure in animal husbandry refers to fundamental facilities and services necessary for better living conditions of animals and its economy to function through better productivity. Mainly, infrastructure can be divided into two categories: hard infrastructure and soft infrastructure. Physical infrastructure, such as buildings, roads, and water supplying systems, belongs to hard infrastructure. Soft infrastructure includes services which are required to maintain economic, health, cultural and social standards of animal husbandry. Therefore, the proper management of infrastructure in animal husbandry is necessary for animal welfare and its economy. Among various technologies to improve the quality of infrastructure, non-thermal plasma (NTP) technology is an effectively applicable technology in different stages of animal husbandry. NTP is mainly helpful in maintaining better health conditions of animals in several ways via decontamination from microorganisms present in air, water, food, instruments and surfaces of animal farming systems. Furthermore, NTP is used in the treatment of waste water, vaccine production, wound healing in animals, odor-free ventilation, and packaging of animal food or animal products. This review summarizes the recent studies of NTP which can be related to the infrastructure in animal husbandry.


Asunto(s)
Crianza de Animales Domésticos , Gases em Plasma , Contaminación del Aire , Alimentación Animal , Bienestar del Animal , Animales , Animales Domésticos , Ambiente Controlado , Agua/análisis , Agua/química , Microbiología del Agua
14.
Sci Rep ; 9(1): 8640, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31201338

RESUMEN

Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) plays an important role in RNA processing via in m6A modification of pre-mRNA or pre-miRNA. However, the functional role of and relationship between m6A and hnRNPA2/B1 in early embryonic development are unclear. Here, we found that hnRNPA2/B1 is crucial for early embryonic development by virtue of regulating specific gene transcripts. HnRNPA2/B1 was localized to the nucleus and cytoplasm during subsequent embryonic development, starting at fertilization. Knockdown of hnRNPA2/B1 delayed embryonic development after the 4-cell stage and blocked further development. RNA-Seq analysis revealed changes in the global expression patterns of genes involved in transcription, translation, cell cycle, embryonic stem cell differentiation, and RNA methylation in hnRNPA2/B1 KD blastocysts. The levels of the inner cell mass markers OCT4 and SOX2 were decreased in hnRNPA2/B1 KD blastocysts, whereas that of the differentiation marker GATA4 was decreased. N6-Adenosine methyltransferase METTL3 knock-down caused embryonic developmental defects similar to those in hnRNPA2/B1 KD embryos. Moreover, METTL3 KD blastocysts showed increased mis-localization of hnRNPA2/B1 and decreased m6A RNA methylation. Taken together, our results suggest that hnRNPA2/B1 is essential for early embryogenesis through the regulation of transcription-related factors and determination of cell fate transition. Moreover, hnRNPA2/B1 is regulated by METTL3-dependent m6A RNA methylation.


Asunto(s)
Desarrollo Embrionario , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Mamíferos/embriología , Mamíferos/metabolismo , Metiltransferasas/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Blastocisto/metabolismo , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Metilación , Metiltransferasas/genética , Ratones Endogámicos ICR , ARN/metabolismo , Interferencia de ARN , Transcriptoma/genética
15.
Sci Rep ; 9(1): 8774, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31217533

RESUMEN

Measurements of the three-dimensional (3D) structure of spermatozoon are crucial for the study of developmental biology and for the evaluation of in vitro fertilization. Here, we present 3D label-free imaging of individual spermatozoon and perform quantitative analysis of bovine, porcine, and mouse spermatozoa morphologies using refractive index tomography. Various morphological and biophysical properties were determined, including the internal structure, volume, surface area, concentration, and dry matter mass of individual spermatozoon. Furthermore, Holstein cows and Korean native cattle spermatozoa were systematically analyzed and revealed significant differences in spermatozoa head length, head width, midpiece length, and tail length between the two breeds. This label-free imaging approach provides a new technique for understanding the physiology of spermatozoa.


Asunto(s)
Imagenología Tridimensional , Espermatozoides/citología , Animales , Bovinos , Masculino , Refractometría , Especificidad de la Especie , Espermatozoides/metabolismo
16.
Mol Reprod Dev ; 86(8): 972-983, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31136049

RESUMEN

Mammalian oocytes lack centrioles but can generate bipolar spindles using several different mechanisms. For example, mouse oocytes have acentriolar microtubule organization centers (MTOCs) that contain many components of the centrosome, and which initiate microtubule polymerization. On the contrary, human oocytes lack MTOCs and the Ran-mediated mechanisms may be responsible for spindle assembly. Complete knowledge of the different mechanisms of spindle assembly is lacking in various mammalian oocytes. In this study, we demonstrate that both MTOC- and Ran-mediated microtubule nucleation are required for functional meiotic metaphase I spindle generation in porcine oocytes. Acentriolar MTOC components, including Cep192 and pericentrin, were absent in the germinal vesicle and germinal vesicle breakdown stages. However, they start to colocalize to the spindle microtubules, but are absent in the meiotic spindle poles. Knockdown of Cep192 or inhibition of Polo-like kinase 1 activity impaired the recruitment of Cep192 and pericentrin to the spindles, impaired microtubule assembly, and decreased the polar body extrusion rate. When the RanGTP gradient was perturbed by the expression of dominant negative or constitutively active Ran mutants, severe defects in microtubule nucleation and cytokinesis were observed, and the localization of MTOC materials in the spindles was abolished. These results demonstrate that the stepwise involvement of MTOC- and Ran-mediated microtubule assembly is crucial for the formation of meiotic spindles in porcine oocytes, indicating the diversity of spindle formation mechanisms among mammalian oocytes.


Asunto(s)
Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Oocitos/metabolismo , Proteína de Unión al GTP ran/metabolismo , Animales , Oocitos/citología , Porcinos
17.
PeerJ ; 6: e5840, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30643672

RESUMEN

Inhibition of both MEK1/2 and glycogen synthase kinase-3 (GSK3; 2i system) facilitates the maintenance of naïve stemness for embryonic stem cells in various mammalian species. However, the effect of the inhibition of the 2i system on porcine early embryogenesis is unknown. We investigated the effect of the 2i system on early embryo development, expression of pluripotency-related genes, and epigenetic modifications. Inhibition of MEK1/2 (by PD0325901) and/or GSK3 (by CHIR99021) did not alter the developmental potential of porcine parthenogenetic embryos, but improved blastocyst quality, as judged by the blastocyst cell number, diameter, and reduction in the number of apoptotic cells. The expression levels of octamer-binding transcription factor 4 and SOX2, the primary transcription factors that maintain embryonic pluripotency, were significantly increased by 2i treatments. Epigenetic modification-related gene expression was altered upon 2i treatment. The collective results indicate that the 2i system in porcine embryos improved embryo developmental potential and blastocyst quality by regulating epigenetic modifications and pluripotency-related gene expression.

18.
FASEB J ; 33(3): 4432-4447, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30557038

RESUMEN

Zinc plays an essential role in mammalian oocyte maturation, fertilization, and early embryogenesis, and depletion of zinc impairs cell cycle control, asymmetric division, and cytokinesis in oocyte. We report that zinc, via the actin nucleator Spire, acts as an essential regulator of the actin cytoskeleton remodeling during mouse oocyte maturation and fertilization. Depletion of zinc in the mouse oocyte impaired cortical and cytoplasmic actin formation. Spire is colocalized with zinc-containing vesicles via its zinc finger-containing Fab1, YOTB, Vac 1, EEA1 (FYVE) domain. Improper localization of Spire by zinc depletion or mutations in the FYVE domain impair cytoplasmic actin mesh formations and asymmetric division and cytokinesis of oocyte. All 3 major domains of the Spire are required for its proper localization and activity. After fertilization or parthenogenetic activation, Spire localization was dramatically altered following zinc release from the oocyte. Collectively, our data reveal novel roles for zinc in the regulation of the actin nucleator Spire by controlling its localization in mammalian oocyte.-Jo, Y.-J., Lee, I.-W., Jung, S.-M., Kwon, J., Kim, N.-H., Namgoong, S. Spire localization via zinc finger-containing domain is crucial for the asymmetric division of mouse oocyte.


Asunto(s)
Citoesqueleto de Actina/fisiología , División Celular Asimétrica/fisiología , Meiosis/fisiología , Proteínas de Microfilamentos/fisiología , Proteínas del Tejido Nervioso/fisiología , Oocitos/metabolismo , Dedos de Zinc/fisiología , Zinc/fisiología , Citoesqueleto de Actina/ultraestructura , Secuencia de Aminoácidos , Animales , Citocinesis , Vesículas Citoplasmáticas/metabolismo , Femenino , Forminas/metabolismo , Ratones , Proteínas de Microfilamentos/antagonistas & inhibidores , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Oocitos/citología , Partenogénesis/efectos de los fármacos , Mutación Puntual , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Inyecciones de Esperma Intracitoplasmáticas , Huso Acromático/fisiología , Huso Acromático/ultraestructura , Estroncio/farmacología
19.
J Cell Sci ; 131(23)2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30404832

RESUMEN

Dynamic reorganization of the actin cytoskeleton is fundamental to a number of cellular events, and various actin-regulatory proteins modulate actin polymerization and depolymerization. Adenylyl cyclase-associated proteins (CAPs), highly conserved actin monomer-binding proteins, have been known to promote actin disassembly by enhancing the actin-severing activity of the ADF/cofilin protein family. In this study, we found that CAP1 regulated actin remodeling during mouse oocyte maturation. Efficient actin disassembly during oocyte maturation is essential for asymmetric division and cytokinesis. CAP1 knockdown impaired meiotic spindle migration and asymmetric division, and resulted in an accumulation of excessive actin filaments near the spindles. In contrast, CAP1 overexpression reduced actin mesh levels. CAP1 knockdown also rescued a decrease in cofilin family protein overexpression-mediated actin levels, and simultaneous expression of human CAP1 (hCAP1) and cofilin synergistically decreased cytoplasmic actin levels. Overexpression of hCAP1 decreased the amount of phosphorylated cofilin, indicating that CAP1 facilitated actin depolymerization via interaction with ADF/cofilin during mouse oocyte maturation. Taken together, our results provide evidence for the importance of dynamic actin recycling by CAP1 and cofilin in the asymmetric division of mouse female gametes.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Destrina/metabolismo , Oocitos/metabolismo , Serina Endopeptidasas/metabolismo , Animales , División Celular/fisiología , Femenino , Ratones , Oocitos/citología
20.
FASEB J ; 32(2): 625-638, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28970258

RESUMEN

Mammalian oocytes lack a centriole that acts as a microtubule organization center (MTOC) in most somatic cells. During oocyte maturation, MTOCs undergo remodeling processes, including decondensation, fragmentation, and self-organization. However, the underlying mechanisms of MTOC remodeling in mouse oocytes are not well understood. We showed that two pericentriolar proteins, Cep192 and Cep152, play crucial roles during MTOC remodeling in mouse oocytes. Cep192 is present in MTOCs at all stages of oocyte maturation, and its depletion induces ablation of MTOCs, delay in spindle formation, and abnormal chromosomal alignment in spindles. In the case of Cep152, its localization on MTOCs is limited at the germinal vesicle stage and then disappears from the MTOCs after the germinal vesicle breakdown stage. Cep152 exclusion from MTOCs is involved in the fragmentation of MTOCs, and it is regulated by cyclin-dependent kinase 1 activity. Our results demonstrate the different roles of Cep192 and Cep152 in MTOC remodeling and a novel regulatory mechanism during meiotic spindle formation in mouse oocytes.-Lee, I.-W., Jo, Y.-J., Jung, S.-M., Wang, H.-Y., Kim, N.-H., Namgoong, S. Distinct roles of Cep192 and Cep152 in acentriolar MTOCs and spindle formation during mouse oocyte maturation.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Meiosis/fisiología , Centro Organizador de los Microtúbulos/metabolismo , Oocitos/metabolismo , Huso Acromático/metabolismo , Animales , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Proteínas Cromosómicas no Histona/genética , Femenino , Ratones , Oocitos/citología , Huso Acromático/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA