Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Stat Methods Med Res ; 28(7): 2096-2111, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29254436

RESUMEN

Based on a Bayesian decision theoretic approach, we optimize frequentist single- and adaptive two-stage trial designs for the development of targeted therapies, where in addition to an overall population, a pre-defined subgroup is investigated. In such settings, the losses and gains of decisions can be quantified by utility functions that account for the preferences of different stakeholders. In particular, we optimize expected utilities from the perspectives both of a commercial sponsor, maximizing the net present value, and also of the society, maximizing cost-adjusted expected health benefits of a new treatment for a specific population. We consider single-stage and adaptive two-stage designs with partial enrichment, where the proportion of patients recruited from the subgroup is a design parameter. For the adaptive designs, we use a dynamic programming approach to derive optimal adaptation rules. The proposed designs are compared to trials which are non-enriched (i.e. the proportion of patients in the subgroup corresponds to the prevalence in the underlying population). We show that partial enrichment designs can substantially improve the expected utilities. Furthermore, adaptive partial enrichment designs are more robust than single-stage designs and retain high expected utilities even if the expected utilities are evaluated under a different prior than the one used in the optimization. In addition, we find that trials optimized for the sponsor utility function have smaller sample sizes compared to trials optimized under the societal view and may include the overall population (with patients from the complement of the subgroup) even if there is substantial evidence that the therapy is only effective in the subgroup.


Asunto(s)
Teorema de Bayes , Ensayos Clínicos como Asunto , Proyectos de Investigación , Biomarcadores , Humanos
2.
J Health Econ ; 50: 298-311, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27776744

RESUMEN

We present a model combining the two regulatory stages relevant to the approval of a new health technology: the authorisation of its commercialisation and the insurer's decision about whether to reimburse its cost. We show that the degree of uncertainty concerning the true value of the insurer's maximum willingness to pay for a unit increase in effectiveness has a non-monotonic impact on the optimal price of the innovation, the firm's expected profit and the optimal sample size of the clinical trial. A key result is that there exists a range of values of the uncertainty parameter over which a reduction in uncertainty benefits the firm, the insurer and patients. We consider how different policy parameters may be used as incentive mechanisms, and the incentives to invest in R&D for marginal projects such as those targeting rare diseases. The model is calibrated using data on a new treatment for cystic fibrosis.


Asunto(s)
Costos de los Medicamentos , Industria Farmacéutica , Investigación/economía , Comercio , Análisis Costo-Beneficio , Humanos , Políticas
3.
PLoS One ; 11(9): e0163726, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27684573

RESUMEN

An important objective in the development of targeted therapies is to identify the populations where the treatment under consideration has positive benefit risk balance. We consider pivotal clinical trials, where the efficacy of a treatment is tested in an overall population and/or in a pre-specified subpopulation. Based on a decision theoretic framework we derive optimized trial designs by maximizing utility functions. Features to be optimized include the sample size and the population in which the trial is performed (the full population or the targeted subgroup only) as well as the underlying multiple test procedure. The approach accounts for prior knowledge of the efficacy of the drug in the considered populations using a two dimensional prior distribution. The considered utility functions account for the costs of the clinical trial as well as the expected benefit when demonstrating efficacy in the different subpopulations. We model utility functions from a sponsor's as well as from a public health perspective, reflecting actual civil interests. Examples of optimized trial designs obtained by numerical optimization are presented for both perspectives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA