Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38768767

RESUMEN

PURPOSE: This phase 1/2 study aimed to evaluate the safety and preliminary efficacy of combining disulfiram and copper (DSF/Cu) with radiation therapy (RT) and temozolomide (TMZ) in patients with newly diagnosed glioblastoma (GBM). METHODS AND MATERIALS: Patients received standard RT and TMZ with DSF (250-375 mg/d) and Cu, followed by adjuvant TMZ plus DSF (500 mg/d) and Cu. Pharmacokinetic analyses determined drug concentrations in plasma and tumors using high-performance liquid chromatography-mass spectrometry. RESULTS: Thirty-three patients, with a median follow-up of 26.0 months, were treated, including 12 IDH-mutant, 9 NF1-mutant, 3 BRAF-mutant, and 9 other IDH-wild-type cases. In the phase 1 arm, 18 patients were treated; dose-limiting toxicity probabilities were 10% (95% CI, 3%-29%) at 250 mg/d and 21% (95% CI, 7%-42%) at 375 mg/d. The phase 2 arm treated 15 additional patients at 250 mg/d. No significant difference in overall survival or progression-free survival was noted between IDH- and NF1-mutant cohorts compared with institutional counterparts treated without DSF/Cu. However, extended remission occurred in 3 BRAF-mutant patients. Diethyl-dithiocarbamate-copper, the proposed active metabolite of DSF/Cu, was detected in plasma but not in tumors. CONCLUSIONS: The maximum tolerated dose of DSF with RT and TMZ is 375 mg/d. DSF/Cu showed limited clinical efficacy for most patients. However, promising efficacy was observed in BRAF-mutant GBM, warranting further investigation.

2.
Clin Cancer Res ; 30(13): 2729-2742, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639919

RESUMEN

PURPOSE: Outcomes for patients with glioblastoma (GBM) remain poor despite multimodality treatment with surgery, radiation, and chemotherapy. There are few immunotherapy options due to the lack of tumor immunogenicity. Several clinical trials have reported promising results with cancer vaccines. To date, studies have used data from a single tumor site to identify targetable antigens, but this approach limits the antigen pool and is antithetical to the heterogeneity of GBM. We have implemented multisector sequencing to increase the pool of neoantigens across the GBM genomic landscape that can be incorporated into personalized peptide vaccines called NeoVax. PATIENTS AND METHODS: In this study, we report the findings of four patients enrolled onto the NeoVax clinical trial (NCT0342209). RESULTS: Immune reactivity to NeoVax neoantigens was assessed in peripheral blood mononuclear cells pre- and post-NeoVax for patients 1 to 3 using IFNγ-ELISPOT assay. A statistically significant increase in IFNγ producing T cells at the post-NeoVax time point for several neoantigens was observed. Furthermore, a post-NeoVax tumor biopsy was obtained from patient 3 and, upon evaluation, revealed evidence of infiltrating, clonally expanded T cells. CONCLUSIONS: Collectively, our findings suggest that NeoVax stimulated the expansion of neoantigen-specific effector T cells and provide encouraging results to aid in the development of future neoantigen vaccine-based clinical trials in patients with GBM. Herein, we demonstrate the feasibility of incorporating multisector sampling in cancer vaccine design and provide information on the clinical applicability of clonality, distribution, and immunogenicity of the neoantigen landscape in patients with GBM.


Asunto(s)
Antígenos de Neoplasias , Vacunas contra el Cáncer , Glioblastoma , Medicina de Precisión , Vacunas de Subunidad , Humanos , Glioblastoma/inmunología , Glioblastoma/terapia , Glioblastoma/genética , Glioblastoma/patología , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/uso terapéutico , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/uso terapéutico , Medicina de Precisión/métodos , Antígenos de Neoplasias/inmunología , Femenino , Masculino , Persona de Mediana Edad , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Adulto , Anciano , Inmunoterapia/métodos , Vacunas de Subunidades Proteicas
3.
Cancer Discov ; 14(6): 1106-1131, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38416133

RESUMEN

Recent clinical trials have highlighted the limited efficacy of T cell-based immunotherapy in patients with glioblastoma (GBM). To better understand the characteristics of tumor-infiltrating lymphocytes (TIL) in GBM, we performed cellular indexing of transcriptomes and epitopes by sequencing and single-cell RNA sequencing with paired V(D)J sequencing, respectively, on TILs from two cohorts of patients totaling 15 patients with high-grade glioma, including GBM or astrocytoma, IDH-mutant, grade 4 (G4A). Analysis of the CD8+ TIL landscape reveals an enrichment of clonally expanded GZMK+ effector T cells in the tumor compared with matched blood, which was validated at the protein level. Furthermore, integration with other cancer types highlights the lack of a canonically exhausted CD8+ T-cell population in GBM TIL. These data suggest that GZMK+ effector T cells represent an important T-cell subset within the GBM microenvironment and may harbor potential therapeutic implications. SIGNIFICANCE: To understand the limited efficacy of immune-checkpoint blockade in GBM, we applied a multiomics approach to understand the TIL landscape. By highlighting the enrichment of GZMK+ effector T cells and the lack of exhausted T cells, we provide a new potential mechanism of resistance to immunotherapy in GBM. This article is featured in Selected Articles from This Issue, p. 897.


Asunto(s)
Linfocitos T CD8-positivos , Glioblastoma , Linfocitos Infiltrantes de Tumor , Humanos , Glioblastoma/inmunología , Glioblastoma/terapia , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias Encefálicas/inmunología , Microambiente Tumoral/inmunología
4.
Neurooncol Adv ; 5(1): vdad088, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554225

RESUMEN

Background: Myeloid-derived suppressor cells (MDSCs) are critical regulators of immunosuppression and radioresistance in glioblastoma (GBM). The primary objective of this pilot phase Ib study was to validate the on-target effect of tadalafil on inhibiting MDSCs in peripheral blood and its safety when combined with chemoradiotherapy in GBM patients. Methods: Patients with newly diagnosed IDH-wild-type GBM received radiation therapy (RT) and temozolomide (TMZ) combined with oral tadalafil for 2 months. A historical cohort of 12 GBM patients treated with RT and TMZ was used as the comparison group. The ratio of MDSCs, T cells, and cytokines at week 6 of RT compared to baseline were analyzed using flow cytometry. Progression-free survival (PFS) and overall survival (OS) were estimated by the Kaplan-Meier method. Results: Tadalafil was well tolerated with no dose-limiting toxicity among 16 evaluable patients. The tadalafil cohort had a significantly lower ratio of circulating MDSCs than the control: granulocytic-MDSCs (mean 0.78 versus 3.21, respectively, P = 0.01) and monocytic-MDSCs (1.02 versus 1.96, respectively, P = 0.006). Tadalafil increased the CD8 ratio compared to the control (1.99 versus 0.70, respectively, P < 0.001), especially the PD-1-CD8 T cells expressing Ki-67, CD38, HLA-DR, CD28, and granzyme B. Proinflammatory cytokine IL-1ß was also significantly increased after tadalafil compared to the control. The tadalafil cohort did not have significantly different PFS and OS than the historical control. Conclusions: Concurrent tadalafil is well tolerated during chemoradiotherapy for GBM. Tadalafil is associated with a reduction of peripheral MDSCs after chemoradiotherapy and increased CD8 T-cell proliferation and activation.

5.
Neurooncol Adv ; 5(1): vdad050, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215950

RESUMEN

Background: Following chemoradiotherapy for high-grade glioma (HGG), it is often challenging to distinguish treatment changes from true tumor progression using conventional MRI. The diffusion basis spectrum imaging (DBSI) hindered fraction is associated with tissue edema or necrosis, which are common treatment-related changes. We hypothesized that DBSI hindered fraction may augment conventional imaging for earlier diagnosis of progression versus treatment effect. Methods: Adult patients were prospectively recruited if they had a known histologic diagnosis of HGG and completed standard-of-care chemoradiotherapy. DBSI and conventional MRI data were acquired longitudinally beginning 4 weeks post-radiation. Conventional MRI and DBSI metrics were compared with respect to their ability to diagnose progression versus treatment effect. Results: Twelve HGG patients were enrolled between August 2019 and February 2020, and 9 were ultimately analyzed (5 progression, 4 treatment effect). Within new or enlarging contrast-enhancing regions, DBSI hindered fraction was significantly higher in the treatment effect group compared to progression group (P = .0004). Compared to serial conventional MRI alone, inclusion of DBSI would have led to earlier diagnosis of either progression or treatment effect in 6 (66.7%) patients by a median of 7.7 (interquartile range = 0-20.1) weeks. Conclusions: In the first longitudinal prospective study of DBSI in adult HGG patients, we found that in new or enlarging contrast-enhancing regions following therapy, DBSI hindered fraction is elevated in cases of treatment effect compared to those with progression. Hindered fraction map may be a valuable adjunct to conventional MRI to distinguish tumor progression from treatment effect.

6.
Sci Immunol ; 8(82): eabg2200, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37027480

RESUMEN

Neoantigens are tumor-specific peptide sequences resulting from sources such as somatic DNA mutations. Upon loading onto major histocompatibility complex (MHC) molecules, they can trigger recognition by T cells. Accurate neoantigen identification is thus critical for both designing cancer vaccines and predicting response to immunotherapies. Neoantigen identification and prioritization relies on correctly predicting whether the presenting peptide sequence can successfully induce an immune response. Because most somatic mutations are single-nucleotide variants, changes between wild-type and mutated peptides are typically subtle and require cautious interpretation. A potentially underappreciated variable in neoantigen prediction pipelines is the mutation position within the peptide relative to its anchor positions for the patient's specific MHC molecules. Whereas a subset of peptide positions are presented to the T cell receptor for recognition, others are responsible for anchoring to the MHC, making these positional considerations critical for predicting T cell responses. We computationally predicted anchor positions for different peptide lengths for 328 common HLA alleles and identified unique anchoring patterns among them. Analysis of 923 tumor samples shows that 6 to 38% of neoantigen candidates are potentially misclassified and can be rescued using allele-specific knowledge of anchor positions. A subset of anchor results were orthogonally validated using protein crystallography structures. Representative anchor trends were experimentally validated using peptide-MHC stability assays and competition binding assays. By incorporating our anchor prediction results into neoantigen prediction pipelines, we hope to formalize, streamline, and improve the identification process for relevant clinical studies.


Asunto(s)
Antígenos de Neoplasias , Neoplasias , Humanos , Antígenos de Neoplasias/genética , Linfocitos T , Mutación , Péptidos/genética
7.
J Cereb Blood Flow Metab ; 43(8): 1382-1389, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36994857

RESUMEN

Many groups have reported lymphatic and glymphatic structures in animal and human brains, but tracer injection into the human brain to demonstrate real-time lymphatic drainage and mapping has not been described. We enrolled patients undergoing standard-of-care resection or stereotactic biopsy for suspected intracranial tumors. Patients received peritumoral injections of 99mTc-tilmanocept followed by planar or tomographic imaging. Fourteen patients with suspected brain tumors were enrolled. One was excluded from analysis because of tracer leakage during injection. There was no drainage of 99mTc-tilmanocept to regional lymph nodes in any of the patients. On average, after correcting for radioactive decay, 70.7% (95% CI: 59.9%, 81.6%) of the tracer in the injection site and 78.1% (95% CI: 71.1%, 85.1%) in the whole-head on the day of surgery remained the morning after, with variable radioactivity in the subarachnoid space. The retained fraction was much greater than expected based on the clearance rate from non-brain injection sites. In this pilot study, the lymphatic tracer 99mTc-tilmanocept was injected into the brain parenchyma, and there was no drainage outside the brain to the cervical lymph nodes. Our work demonstrates an inefficiency of drainage from peritumoral brain parenchyma and highlights a therapeutic opportunity to improve immunosurveillance of the brain.


Asunto(s)
Linfocintigrafia , Biopsia del Ganglio Linfático Centinela , Humanos , Linfocintigrafia/métodos , Proyectos Piloto , Biopsia del Ganglio Linfático Centinela/métodos , Radiofármacos , Metástasis Linfática
8.
J Immunother Cancer ; 11(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36808076

RESUMEN

BACKGROUND: Adoptive cellular therapies with chimeric antigen receptor T cells have revolutionized the treatment of some malignancies but have shown limited efficacy in solid tumors such as glioblastoma and face a scarcity of safe therapeutic targets. As an alternative, T cell receptor (TCR)-engineered cellular therapy against tumor-specific neoantigens has generated significant excitement, but there exist no preclinical systems to rigorously model this approach in glioblastoma. METHODS: We employed single-cell PCR to isolate a TCR specific for the Imp3D81N neoantigen (mImp3) previously identified within the murine glioblastoma model GL261. This TCR was used to generate the Mutant Imp3-Specific TCR TransgenIC (MISTIC) mouse in which all CD8 T cells are specific for mImp3. The therapeutic efficacy of neoantigen-specific T cells was assessed through a model of cellular therapy consisting of the transfer of activated MISTIC T cells and interleukin 2 into lymphodepleted tumor-bearing mice. We employed flow cytometry, single-cell RNA sequencing, and whole-exome and RNA sequencing to examine the factors underlying treatment response. RESULTS: We isolated and characterized the 3×1.1C TCR that displayed a high affinity for mImp3 but no wild-type cross-reactivity. To provide a source of mImp3-specific T cells, we generated the MISTIC mouse. In a model of adoptive cellular therapy, the infusion of activated MISTIC T cells resulted in rapid intratumoral infiltration and profound antitumor effects with long-term cures in a majority of GL261-bearing mice. The subset of mice that did not respond to the adoptive cell therapy showed evidence of retained neoantigen expression but intratumoral MISTIC T cell dysfunction. The efficacy of MISTIC T cell therapy was lost in mice bearing a tumor with heterogeneous mImp3 expression, showcasing the barriers to targeted therapy in polyclonal human tumors. CONCLUSIONS: We generated and characterized the first TCR transgenic against an endogenous neoantigen within a preclinical glioma model and demonstrated the therapeutic potential of adoptively transferred neoantigen-specific T cells. The MISTIC mouse provides a powerful novel platform for basic and translational studies of antitumor T-cell responses in glioblastoma.


Asunto(s)
Glioblastoma , Inmunoterapia Adoptiva , Ratones , Humanos , Animales , Antígenos de Neoplasias , Linfocitos T CD8-positivos , Receptores de Antígenos de Linfocitos T
9.
Cancer Immunol Res ; 11(1): 20-37, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36409838

RESUMEN

The central nervous system (CNS) antigen-presenting cell (APC) that primes antitumor CD8+ T-cell responses remains undefined. Elsewhere in the body, the conventional dendritic cell 1 (cDC1) performs this role. However, steady-state brain parenchyma cDC1 are extremely rare; cDCs localize to the choroid plexus and dura. Thus, whether the cDC1 play a function in presenting antigen derived from parenchymal sources in the tumor setting remains unknown. Using preclinical glioblastoma (GBM) models and cDC1-deficient mice, we explored the presently unknown role of cDC1 in CNS antitumor immunity. We determined that, in addition to infiltrating the brain tumor parenchyma itself, cDC1 prime neoantigen-specific CD8+ T cells against brain tumors and mediate checkpoint blockade-induced survival benefit. We observed that cDC, including cDC1, isolated from the tumor, the dura, and the CNS-draining cervical lymph nodes harbored a traceable fluorescent tumor antigen. In patient samples, we observed several APC subsets (including the CD141+ cDC1 equivalent) infiltrating glioblastomas, meningiomas, and dura. In these same APC subsets, we identified a tumor-specific fluorescent metabolite of 5-aminolevulinic acid, which fluorescently labeled tumor cells during fluorescence-guided GBM resection. Together, these data elucidate the specialized behavior of cDC1 and suggest that cDC1 play a significant role in CNS antitumor immunity.


Asunto(s)
Células Dendríticas , Neoplasias , Animales , Ratones , Linfocitos T CD8-positivos , Antígenos de Neoplasias , Encéfalo
10.
J Immunother Cancer ; 10(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36543376

RESUMEN

BACKGROUND: Glioblastoma is a fatal disease despite aggressive multimodal therapy. PD-1 blockade, a therapy that reinvigorates hypofunctional exhausted CD8 T cells (Tex) in many malignancies, has not shown efficacy in glioblastoma. Loss of CD4 T cells can lead to an exhausted CD8 T-cell phenotype, and terminally exhausted CD8 T cells (Tex term) do not respond to PD-1 blockade. GL261 and CT2A are complementary orthotopic models of glioblastoma. GL261 has a functional CD4 T-cell compartment and is responsive to PD-1 blockade; notably, CD4 depletion abrogates this survival benefit. CT2A is composed of dysfunctional CD4 T cells and is PD-1 blockade unresponsive. We leverage these models to understand the impact of CD4 T cells on CD8 T-cell exhaustion and PD-1 blockade sensitivity in glioblastoma. METHODS: Single-cell RNA sequencing was performed on flow sorted tumor-infiltrating lymphocytes from female C57/BL6 mice implanted with each model, with and without PD-1 blockade therapy. CD8+ and CD4+ T cells were identified and separately analyzed. Survival analyses were performed comparing PD-1 blockade therapy, CD40 agonist or combinatorial therapy. RESULTS: The CD8 T-cell compartment of the models is composed of heterogenous CD8 Tex subsets, including progenitor exhausted CD8 T cells (Tex prog), intermediate Tex, proliferating Tex, and Tex term. GL261 is enriched with the PD-1 responsive Tex prog subset relative to the CT2A and CD4-depleted GL261 models, which are composed predominantly of the PD-1 blockade refractory Tex term subset. Analysis of the CD4 T-cell compartments revealed that the CT2A microenvironment is enriched with a suppressive Treg subset and an effector CD4 T-cell subset that expresses an inhibitory interferon-stimulated (Isc) signature. Finally, we demonstrate that addition of CD40 agonist to PD-1 blockade therapy improves survival in CT2A tumor-bearing mice. CONCLUSIONS: Here, we describe that dysfunctional CD4 T cells are associated with terminal CD8 T-cell exhaustion, suggesting CD4 T cells impact PD-1 blockade efficacy by controlling the severity of exhaustion. Given that CD4 lymphopenia is frequently observed in patients with glioblastoma, this may represent a basis for resistance to PD-1 blockade. We demonstrate that CD40 agonism may circumvent a dysfunctional CD4 compartment to improve PD-1 blockade responsiveness, supporting a novel synergistic immunotherapeutic approach.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Femenino , Ratones , Animales , Linfocitos T CD4-Positivos , Receptor de Muerte Celular Programada 1 , Glioblastoma/tratamiento farmacológico , Agotamiento de Células T , Linfocitos T CD8-positivos , Neoplasias Encefálicas/tratamiento farmacológico , Microambiente Tumoral
11.
Neurooncol Pract ; 9(3): 193-200, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35601970

RESUMEN

Background: Gliomas are the most common primary brain tumor in adults. Current treatments involve surgery, radiation, and temozolomide (TMZ) chemotherapy; however, prognosis remains poor and new approaches are required. Circadian medicine aims to maximize treatment efficacy and/or minimize toxicity by timed delivery of medications in accordance with the daily rhythms of the patient. We published a retrospective study showing greater anti-tumor efficacy for the morning, relative to the evening, administration of TMZ in patients with glioblastoma. We conducted this prospective randomized trial to determine the feasibility, and potential clinical impact, of TMZ chronotherapy in patients with gliomas (NCT02781792). Methods: Adult patients with gliomas (WHO grade II-IV) were enrolled prior to initiation of monthly TMZ therapy and were randomized to receive TMZ either in the morning (AM) before 10 am or in the evening (PM) after 8 pm. Pill diaries were recorded to measure compliance and FACT-Br quality of life (QoL) surveys were completed throughout treatment. Study compliance, adverse events (AE), and overall survival were compared between the two arms. Results: A total of 35 evaluable patients, including 21 with GBM, were analyzed (18 AM patients and 17 PM patients). Compliance data demonstrated the feasibility of timed TMZ dosing. There were no significant differences in AEs, QoL, or survival between the arms. Conclusions: Chronotherapy with TMZ is feasible. A larger study is needed to validate the effect of chronotherapy on clinical efficacy.

13.
Adv Drug Deliv Rev ; 186: 114312, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35487282

RESUMEN

Malignant gliomas are the most common primary brain cancer diagnosed and still carry a poor prognosis despite aggressive multimodal management. Despite the continued advances in immunotherapy for other cancer types, however, there remain no FDA approved immunotherapies for cancers such as glioblastoma. OF the many approaches being explored, cancer vaccine programs are undergoing a renaissance due to the technological advances and personalized nature of their contemporary design. Neoantigen vaccines are a form of immunotherapy involving the use of DNA, mRNA, and proteins derived from non-synonymous mutations identified in patient tumor tissue samples to stimulate tumor-specific T-cell reactivity leading to enhance tumor targeting. In the last several years, the study of neoantigens as a therapeutic target has increased, with the routine workflow implementation of comprehensive next generation sequencing and in silico peptide binding prediction algorithms. Several neoantigen vaccine platforms are being evaluated in clinical trials for malignancies including melanoma, pancreatic cancer, breast cancer, lung cancer, and glioblastoma, among others. In this review, we will review the concept of neoantigen discovery using cancer immunogenomics approaches in glioblastoma and explore the disease-specific issues being addressed in the design of effective personalized cancer vaccine strategies.


Asunto(s)
Vacunas contra el Cáncer , Glioblastoma , Glioma , Neoplasias , Antígenos de Neoplasias , Vacunas contra el Cáncer/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioma/tratamiento farmacológico , Humanos , Factores Inmunológicos , Inmunoterapia , Neoplasias/tratamiento farmacológico , Vacunación
14.
Cancer Discov ; 12(1): 154-171, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34610950

RESUMEN

Despite some success in secondary brain metastases, targeted or immune-based therapies have shown limited efficacy against primary brain malignancies such as glioblastoma (GBM). Although the intratumoral heterogeneity of GBM is implicated in treatment resistance, it remains unclear whether this diversity is observed within brain metastases and to what extent cancer cell-intrinsic heterogeneity sculpts the local immune microenvironment. Here, we profiled the immunogenomic state of 93 spatially distinct regions from 30 malignant brain tumors through whole-exome, RNA, and T-cell receptor sequencing. Our analyses identified differences between primary and secondary malignancies, with gliomas displaying more spatial heterogeneity at the genomic and neoantigen levels. In addition, this spatial diversity was recapitulated in the distribution of T-cell clones in which some gliomas harbored highly expanded but spatially restricted clonotypes. This study defines the immunogenomic landscape across a cohort of malignant brain tumors and contains implications for the design of targeted and immune-based therapies against intracranial malignancies. SIGNIFICANCE: This study describes the impact of spatial heterogeneity on genomic and immunologic characteristics of gliomas and brain metastases. The results suggest that gliomas harbor significantly greater intratumoral heterogeneity of genomic alterations, neoantigens, and T-cell clones than brain metastases, indicating the importance of multisector analysis for clinical or translational studies.This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/secundario , Receptores de Antígenos de Linfocitos T/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Genómica , Glioblastoma/genética , Glioblastoma/inmunología , Humanos , Inmunoterapia , Metástasis de la Neoplasia , Microambiente Tumoral , Secuenciación del Exoma
15.
Neurooncol Adv ; 3(1): vdab081, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34345818

RESUMEN

BACKGROUND: Optimal management for recurrent IDH-mutant glioma after radiation therapy (RT) is not well-defined. This study assesses practice patterns for managing recurrent IDH-mutant astrocytoma (Astro) and 1p/19q codeleted oligodendroglioma (Oligo) after RT and surveys their clinical outcomes after different salvage approaches. METHODS: Ninety-four recurrent Astro or Oligo patients after RT who received salvage systemic therapy (SST) between 2001 and 2019 at a tertiary cancer center were retrospectively analyzed. SST was defined as either alkylating chemotherapy (AC) or nonalkylating therapy (non-AC). Overall survival (OS) and progression-free survival (PFS) were calculated using the Kaplan-Meier method from the start of SST. Multivariable analysis (MVA) was conducted using Cox regression analysis. RESULTS: Recurrent Oligo (n = 35) had significantly higher PFS (median: 3.1 vs 0.8 years, respectively, P = .002) and OS (median: 6.3 vs 1.5 years, respectively, P < .001) than Astro (n = 59). Overall, 90% of recurrences were local. Eight-three percent received AC as the first-line SST; 50% received salvage surgery before SST; approximately 50% with local failure >2 years after prior RT received reirradiation. On MVA, non-AC was associated with worse OS for both Oligo and Astro; salvage surgery was associated with improved PFS and OS for Astro; early reirradiation was associated with improved PFS for Astro. CONCLUSIONS: Recurrent radiation-relapsed IDH-mutant gliomas represent a heterogeneous group with variable treatment approaches. Surgery, AC, and reirradiation remain the mainstay of salvage options for retreatment.

16.
Front Oncol ; 11: 693146, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249742

RESUMEN

PURPOSE: Clinical evidence suggests radiation induces changes in the brain microenvironment that affect subsequent response to treatment. This study investigates the effect of previous radiation, delivered six weeks prior to orthotopic tumor implantation, on subsequent tumor growth and therapeutic response to anti-PD-L1 therapy in an intracranial mouse model, termed the Radiation Induced Immunosuppressive Microenvironment (RI2M) model. METHOD AND MATERIALS: C57Bl/6 mice received focal (hemispheric) single-fraction, 30-Gy radiation using the Leksell GammaKnife® Perfexion™, a dose that does not produce frank/gross radiation necrosis. Non-irradiated GL261 glioblastoma tumor cells were implanted six weeks later into the irradiated hemisphere. Lesion volume was measured longitudinally by in vivo MRI. In a separate experiment, tumors were implanted into either previously irradiated (30 Gy) or non-irradiated mouse brain, mice were treated with anti-PD-L1 antibody, and Kaplan-Meier survival curves were constructed. Mouse brains were assessed by conventional hematoxylin and eosin (H&E) staining, IBA-1 staining, which detects activated microglia and macrophages, and fluorescence-activated cell sorting (FACS) analysis. RESULTS: Tumors in previously irradiated brain display aggressive, invasive growth, characterized by viable tumor and large regions of hemorrhage and necrosis. Mice challenged intracranially with GL261 six weeks after prior intracranial irradiation are unresponsive to anti-PD-L1 therapy. K-M curves demonstrate a statistically significant difference in survival for tumor-bearing mice treated with anti-PD-L1 antibody between RI2M vs. non-irradiated mice. The most prominent immunologic change in the post-irradiated brain parenchyma is an increased frequency of activated microglia. CONCLUSIONS: The RI2M model focuses on the persisting (weeks-to-months) impact of radiation applied to normal, control-state brain on the growth characteristics and immunotherapy response of subsequently implanted tumor. GL261 tumors growing in the RI2M grew markedly more aggressively, with tumor cells admixed with regions of hemorrhage and necrosis, and showed a dramatic loss of response to anti-PD-L1 therapy compared to tumors in non-irradiated brain. IHC and FACS analyses demonstrate increased frequency of activated microglia, which correlates with loss of sensitivity to checkpoint immunotherapy. Given that standard-of-care for primary brain tumor following resection includes concurrent radiation and chemotherapy, these striking observations strongly motivate detailed assessment of the late effects of the RI2M on tumor growth and therapeutic efficacy.

17.
Melanoma Manag ; 8(2): MMT55, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34084449

RESUMEN

The introduction of immune checkpoint blockade (ICB) and BRAF-MEK inhibitors has substantially improved outcomes in patients with metastatic melanoma. However, several challenging factors may hinder the efficacy of ICB in patients with symptomatic intracranial metastatic melanoma who are immunosuppressed due to the use of steroids prior to the administration of ICB. This has resulted in the exclusion of patients treated with high dose steroid at baseline from the majority of ICB clinical trials. In addition, despite the high efficacy of BRAF-MEK inhibitors in BRAF-mutant intracranial metastatic melanoma, most tumors will eventually progress. This demonstrates a gap in addressing the best management in such patients. Here, we present a case demonstrating our approach in this patient population.

18.
Biomark Insights ; 16: 11772719211006666, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854293

RESUMEN

We compared the performance of two 96-well multiplex immunoassay platforms in assessing plasma cytokine concentrations in patients with glioblastoma (GBM; n = 27), individuals with melanoma, breast or lung cancer metastases to the brain (n = 17), and healthy volunteers (n = 11). Assays included a bead-based fluorescence MILLIPLEX® assay/Luminex (LMX) platform and 4 planar electrochemiluminescence kits from Meso Scale Discovery (MSD). The LMX kit evaluated 21 cytokines and the 3 MSD kits evaluated 20 cytokines in total, with 19 overlapping human cytokines between platforms (GM-CSF, IFNγ, IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-13, IL-17A, IL-21, IL-23, MIP-1α, MIP-1ß, MIP-3α, TNFα). The MSD platform had lower LLoQs (lower limits of quantification) than LMX for 17/19 cytokines, and higher LLoQs for IFN-γ and IL-21. The ULoQs were higher in LMX versus MSD assays for 17/19 shared analytes, but lower than MSD for IL-17A and IL-21. With LMX, all 19 shared analytes were quantifiable in each of 55 samples. Although MSD recombinant protein standard curves indicated lower LLoQs than LMX for most cytokines, MSD detected 7/19 (37%) native analytes in <75% of samples, including 0% detection for IL-21 and 8% for IL-23. The LMX platform categorized identical samples at greater concentrations than the MSD system for most analytes (MIP-1ß the sole exception), sometimes by orders of magnitude. This mismatched quantification paradigm was supported by Bland-Altman analysis. LMX identified significantly elevated levels of 10 of 19 circulating cytokines in GBM: GM-CSF, IFN-γ, IL-1ß, IL-5, IL-10, IL-17A, IL-21, IL-23, MIP-1α, and MIP-3α, consistent with prior findings and confirming the utility of applying appropriate multiplex immunoassay technologies toward developing a cytokine signature profile for GBM.

19.
Genome Med ; 13(1): 56, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33879241

RESUMEN

BACKGROUND: Preclinical studies and early clinical trials have shown that targeting cancer neoantigens is a promising approach towards the development of personalized cancer immunotherapies. DNA vaccines can be rapidly and efficiently manufactured and can integrate multiple neoantigens simultaneously. We therefore sought to optimize the design of polyepitope DNA vaccines and test optimized polyepitope neoantigen DNA vaccines in preclinical models and in clinical translation. METHODS: We developed and optimized a DNA vaccine platform to target multiple neoantigens. The polyepitope DNA vaccine platform was first optimized using model antigens in vitro and in vivo. We then identified neoantigens in preclinical breast cancer models through genome sequencing and in silico neoantigen prediction pipelines. Optimized polyepitope neoantigen DNA vaccines specific for the murine breast tumor E0771 and 4T1 were designed and their immunogenicity was tested in vivo. We also tested an optimized polyepitope neoantigen DNA vaccine in a patient with metastatic pancreatic neuroendocrine tumor. RESULTS: Our data support an optimized polyepitope neoantigen DNA vaccine design encoding long (≥20-mer) epitopes with a mutant form of ubiquitin (Ubmut) fused to the N-terminus for antigen processing and presentation. Optimized polyepitope neoantigen DNA vaccines were immunogenic and generated robust neoantigen-specific immune responses in mice. The magnitude of immune responses generated by optimized polyepitope neoantigen DNA vaccines was similar to that of synthetic long peptide vaccines specific for the same neoantigens. When combined with immune checkpoint blockade therapy, optimized polyepitope neoantigen DNA vaccines were capable of inducing antitumor immunity in preclinical models. Immune monitoring data suggest that optimized polyepitope neoantigen DNA vaccines are capable of inducing neoantigen-specific T cell responses in a patient with metastatic pancreatic neuroendocrine tumor. CONCLUSIONS: We have developed and optimized a novel polyepitope neoantigen DNA vaccine platform that can target multiple neoantigens and induce antitumor immune responses in preclinical models and neoantigen-specific responses in clinical translation.


Asunto(s)
Antígenos de Neoplasias/inmunología , Epítopos/inmunología , Inmunidad , Investigación Biomédica Traslacional , Vacunas de ADN/inmunología , Adulto , Animales , Presentación de Antígeno/inmunología , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Células HeLa , Humanos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Masculino , Neoplasias Mamarias Animales/patología , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Tumores Neuroendocrinos/inmunología , Tumores Neuroendocrinos/patología , Péptidos/inmunología , Linfocitos T/inmunología
20.
Neurooncol Adv ; 3(1): vdab164, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34988450

RESUMEN

BACKGROUND: The blood-brain barrier (BBB) is a major limiting factor for drug delivery in brain tumors. Laser interstitial thermal therapy (LITT) disrupts the peritumoral BBB. In this study, we examine survival in patients with recurrent glioblastoma (GBM) treated with LITT followed by low-dose doxorubicin, a potent anti-neoplastic drug with poor BBB permeability. METHODS: Forty-one patients with recurrent GBM were enrolled; thirty patients were evaluable. Participants underwent LITT followed by 6 weekly doxorubicin treatments starting within one week (Early Arm) or at 6-8 weeks (Late Arm) after LITT. The overall survival (OS), local progression-free survival (PFS), and any PFS were compared to historical controls treated with bevacizumab salvage therapy (n = 50) or LITT with standard BBB-permeable salvage therapy (n = 28). Cox proportional-hazards models examined the contribution of age, gender, MGMT promoter status, and IDH-mutation status on any PFS and OS. Adverse events were also cataloged. RESULTS: The Late Arm and all patients (Early Arm + Late Arm) demonstrated significant improvement in OS compared to historical controls treated with bevacizumab (p < 0.001) and LITT with standard salvage therapy (p < 0.05). No significant difference in any PFS was observed between either arm and historical controls. Low-dose doxorubicin was well tolerated with comparable adverse event rates between the arms. CONCLUSIONS: Low-dose doxorubicin given after LITT is well tolerated and correlated with higher OS compared to historical controls treated with bevacizumab or LITT with standard salvage chemotherapy. A larger study is needed to further characterize survival and progression patterns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA