Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biomedicines ; 12(7)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39062067

RESUMEN

Animal models are crucial to preclinical oncological research and drug development. Animal experiments must be performed in accordance with the 3R principles of replacement and reduction, if possible, and refinement where these procedures remain crucial. In addition, European Union legislations demand a continuous refinement approach, as well as pro- and retrospective severity assessment. In this study, an objective databased severity assessment was performed in murine models for pancreatic cancer induced by orthotopic, subcutaneous, or intravenous injection of Panc02 cells. Parameters such as body weight change, distress score, perianal temperature, mouse grimace scale, burrowing, nesting behavior, and the concentration of corticosterone in plasma and its metabolites in feces were monitored during tumor progression. The most important parameters were combined into a score and mapped against a reference data set by the Relative Severity Assessment procedure (RELSA) to obtain the maximum achieved severity for each animal (RELSAmax). This scoring revealed a significantly higher RELSAmax for the orthotopic model than for the subcutaneous and intravenous models. However, compared to animal models such as pancreatitis and bile duct ligation, the pancreatic cancer models are shown to be less severe. Data-based animal welfare assessment proved to be a valuable tool for comparing the severity of differently induced cancer models.

2.
J Transl Med ; 22(1): 187, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38378655

RESUMEN

BACKGROUND: The initial idea of functional tissue replacement has shifted to the concept that injected cells positively modulate myocardial healing by a non-specific immune response of the transplanted cells within the target tissue. This alleged local modification of the scar requires assessment of regional properties of the left ventricular wall in addition to commonly applied measures of global morphological and functional parameters. Hence, we aimed at investigating the effect of cardiac cell therapy with cardiovascular progenitor cells, so-called cardiac induced cells, on both global and regional properties of the left ventricle by a multimodal imaging approach in a mouse model. METHODS: Myocardial infarction was induced in mice by ligation of the left anterior descending artery, the therapy group received an intramyocardial injection of 1 × 106 cardiac induced cells suspended in matrigel, the control group received matrigel only. [18F]FDG positron emission tomography imaging was performed after 17 days, to assess regional glucose metabolism. Three weeks after myocardial infarction, cardiac magnetic resonance imaging was performed for morphological and functional assessment of the left ventricle. Following these measurements, hearts were excised for histological examinations. RESULTS: Cell therapy had no significant effect on global morphological parameters. Similarly, there was no difference in scar size and capillary density between therapy and control group. However, there was a significant improvement in contractile function of the left ventricle - left ventricular ejection fraction, stroke volume and cardiac output. Regional analysis of the left ventricle identified changes of wall properties in the scar area as the putative mechanism. Cell therapy reduced the thinning of the scar and significantly improved its radial contractility. Furthermore, the metabolic defect, assessed by [18F]FDG, was significantly reduced by the cell therapy. CONCLUSION: Our data support the relevance of extending the assessment of global left ventricular parameters by a structured regional wall analysis for the evaluation of therapies targeting at modulation of healing myocardium. This approach will enable a deeper understanding of mechanisms underlying the effect of experimental regenerative therapies, thus paving the way for a successful translation into clinical application.


Asunto(s)
Fluorodesoxiglucosa F18 , Infarto del Miocardio , Animales , Ratones , Volumen Sistólico , Fluorodesoxiglucosa F18/metabolismo , Cicatriz/patología , Función Ventricular Izquierda , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/terapia , Infarto del Miocardio/patología , Miocardio/patología
3.
J Nucl Med ; 64(10): 1654-1659, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37934025

RESUMEN

Despite the recent success of prostate-specific membrane antigen (PSMA)-targeted compounds for theranostic use in prostate cancer (PCa), alternative options for the detection and treatment of PSMA-negative lesions are needed. We have recently developed a novel gastrin-releasing peptide receptor (GRPR) ligand with improved metabolic stability, which might improve diagnostic and therapeutic efficacy and could be valuable for PSMA-negative PCa patients. Our aim was to examine its suitability for theranostic use. We performed a comparative preclinical study on [64Cu]Cu-/[68Ga]Ga-AMTG ([64Cu]Cu-/[68Ga]Ga-α-Me-l-Trp8-RM2) using [64Cu]Cu-/[68Ga]Ga-RM2 ([64Cu]Cu-/[68Ga]Ga-DOTA-Pip5-Phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Sta13-Leu14-NH2) as a reference compound and investigated [68Ga]Ga-AMTG in a proof-of-concept study in a PCa patient. Methods: Peptides were labeled with 64Cu (80 °C, 1.0 M NaOAc, pH 5.50) and 68Ga (90 °C, 0.25 M NaOAc, pH 4.50). GRPR affinity (half-maximal inhibitory concentration, room temperature, 2 h) and GRPR-mediated internalization (37 °C, 60 min) were examined on PC-3 cells. Biodistribution studies were performed at 1 h after injection in PC-3 tumor-bearing mice. For a first-in-humans application, 173 MBq of [68Ga]Ga-AMTG were administered intravenously and whole-body PET/CT scans were acquired at 75 min after injection. Results: 64Cu- and 68Ga-labeling proceeded almost quantitatively (>98%). All compounds revealed similarly high GRPR affinity (half-maximal inhibitory concentration, 1.5-4.0 nM) and high receptor-bound fractions (79%-84% of cell-associated activity). In vivo, high activity levels (percentage injected dose per gram) were found in the PC-3 tumor (14.1-15.1 %ID/g) and the pancreas (12.6-30.7 %ID/g), whereas further off-target accumulation was low at 1 h after injection, except for elevated liver uptake observed for both 64Cu-labeled compounds. Overall biodistribution profiles and tumor-to-background ratios were comparable but slightly enhanced for the 68Ga-labeled analogs in most organs. [68Ga]Ga-AMTG confirmed the favorable pharmacokinetics-as evident from preclinical studies-in a patient with metastasized castration-resistant PCa showing intense uptake in several lesions. Conclusion: AMTG is eligible for theranostic use, as labeling with 64Cu and 68Ga, as well as 177Lu (known from previous study), does not have a negative influence on its favorable biodistribution pattern. For this reason, further clinical evaluation is warranted.


Asunto(s)
Neoplasias , Receptores de Bombesina , Masculino , Humanos , Animales , Ratones , Radioisótopos de Galio , Tomografía Computarizada por Tomografía de Emisión de Positrones , Distribución Tisular
4.
Proc Natl Acad Sci U S A ; 119(40): e2204509119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161894

RESUMEN

Multiple sclerosis (MS), an autoimmune-driven, inflammatory demyelinating disease of the central nervous system (CNS), causes irreversible accumulation of neurological deficits to a variable extent. Although there are potent disease-modifying agents for its initial relapsing-remitting phase, immunosuppressive therapies show limited efficacy in secondary progressive MS (SPMS). Although modulation of sphingosine-1 phosphate receptors has proven beneficial during SPMS, the underlying mechanisms are poorly understood. In this project, we followed the hypothesis that siponimod, a sphingosine-1 phosphate receptor modulator, exerts protective effects by direct modulation of glia cell function (i.e., either astrocytes, microglia, or oligodendrocytes). To this end, we used the toxin-mediated, nonautoimmune MS animal model of cuprizone (Cup) intoxication. On the histological level, siponimod ameliorated cuprizone-induced oligodendrocyte degeneration, demyelination, and axonal injury. Protective effects were evident as well using GE180 translocator protein 18-kDa (TSPO) imaging with positron emission tomography (PET)/computed tomography (CT) imaging or next generation sequencing (NGS). Siponimod also ameliorated the cuprizone-induced pathologies in Rag1-deficient mice, demonstrating that the protection is independent of T and B cell modulation. Proinflammatory responses in primary mixed astrocytes/microglia cell cultures were not modulated by siponimod, suggesting that other cell types than microglia and astrocytes are targeted. Of note, siponimod completely lost its protective effects in S1pr5-deficient mice, suggesting direct protection of degenerating oligodendrocytes. Our study demonstrates that siponimod exerts protective effects in the brain in a S1PR5-dependent manner. This finding is not just relevant in the context of MS but in other neuropathologies as well, characterized by a degeneration of the axon-myelin unit.


Asunto(s)
Azetidinas , Compuestos de Bencilo , Esclerosis Múltiple Crónica Progresiva , Oligodendroglía , Receptores de Esfingosina-1-Fosfato , Esfingosina , Animales , Azetidinas/farmacología , Compuestos de Bencilo/farmacología , Cuprizona , Modelos Animales de Enfermedad , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Oligodendroglía/efectos de los fármacos , Esfingosina/farmacología , Esfingosina/uso terapéutico , Receptores de Esfingosina-1-Fosfato/metabolismo
5.
PLoS One ; 17(4): e0266601, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35452495

RESUMEN

Pancreatic cancer is the fourth leading cause of cancer death, with a 5-year survival rate of 10%. A stagnant high mortality rate over the last decades highlights the need for innovative therapeutic approaches. Pancreatic tumors pursue an altered metabolism in order to maintain energy generation under low nutrient influx and hypoxic conditions. Targeting these metabolic strategies might therefore be a reasonable therapeutic approach for pancreatic cancer. One promising agent is CPI- 613, a potent inhibitor of two enzymes of the tricarboxylic acid cycle. The present study evaluated the anti-cancerous efficacy of CPI-613 in combination with galloflavin, a lactate dehydrogenase inhibitor or with alpha-cyano-4-hydroxycinnamic acid, an inhibitor of monocarboxylate transporters. The efficacy of both combination therapies was tested in vitro on one human and two murine pancreatic cancer cell lines and in vivo in an orthotopic pancreatic cancer model. Tumor progression was evaluated by MRI and 18F-FDG PET-CT. Both combinatorial treatments demonstrated in vitro a significant inhibition of pancreatic cancer cell proliferation and induction of cell death. In contrast to the in vitro results, both combination therapies did not significantly reduce tumor growth in vivo. The in vitro results suggest that a combined inhibition of different metabolic pathways might be a promising approach for cancer therapy. However, the in vivo experiments indicate that applying a higher dosage or using other drugs targeting these metabolic pathways might be more promising.


Asunto(s)
Neoplasias Pancreáticas , Tomografía Computarizada por Tomografía de Emisión de Positrones , Animales , Caprilatos , Línea Celular Tumoral , Humanos , Ácido Láctico/metabolismo , Ratones , Neoplasias Pancreáticas/patología , Sulfuros , Neoplasias Pancreáticas
6.
ChemMedChem ; 16(5): 804-808, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33245194

RESUMEN

The development of radiometal-labelled pharmaceuticals for neuroimaging could offer great potential due to easier handling during labelling and availability through radionuclide generator systems. Nonetheless, to date, no such tracers are available for positron emission tomography, primarily owing to the challenge of crossing the blood-brain barrier (BBB) and loss of affinity through chelator attachment. We have prepared a variety of 68 Ga-labelled phenyltropanes showing that, through a simple hydrocarbon-linker, it is possible to introduce a chelator onto the lead structure while maintaining its high affinity for hDAT (human dopamine transporter) and simultaneously achieving adequate lipophilicity. One of the candidates, [68 Ga]Ga-HBED-hexadiyne-tropane, showed an IC50 value of 66 nM, together with a log D7.4 of 0.96. A µPET study in a hemi-parkinsonian rat model showed a fast wash-out of the tracer, and no specific uptake in the brain, thus implying an inability to penetrate the BBB.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Radiofármacos/metabolismo , Tropanos/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Relación Dosis-Respuesta a Droga , Radioisótopos de Galio , Masculino , Estructura Molecular , Tomografía de Emisión de Positrones , Radiofármacos/química , Ratas , Ratas Wistar , Relación Estructura-Actividad , Tropanos/química
7.
J Org Chem ; 86(1): 103-109, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33245661

RESUMEN

Aryl boronic acids and esters are important building blocks in API synthesis. The palladium-catalyzed Suzuki-Miyaura borylation is the most common method for their preparation. This paper describes an improvement of the current reaction conditions. By using lipophilic bases such as potassium 2-ethyl hexanoate, the borylation reaction could be achieved at 35 °C in less than 2 h with very low palladium loading (0.5 mol %). A preliminary mechanistic study shows a hitherto unrecognized inhibitory effect by the carboxylate anion on the catalytic cycle, whereas 2-ethyl hexanoate minimizes this inhibitory effect. This improved methodology enables borylation of a wide range of substrates under mild conditions.

8.
Cells ; 9(6)2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486211

RESUMEN

Angiogenesis plays a central role in the healing process following acute myocardial infarction. The PET tracer [68Ga]-NODAGA-RGD, which is a ligand for the αvß3 integrin, has been investigated for imaging angiogenesis in the process of healing myocardium in both animal and clinical studies. It´s value as a prognostic marker of functional outcome remains unclear. Therefore, the aim of this work was to establish [68Ga]-NODAGA-RGD for imaging angiogenesis in the murine infarct model and evaluate the tracer as a predictor for cardiac remodeling in the context of cardiac stem cell therapy. [68Ga]-NODAGA-RGD PET performed seven days after left anterior descending coronary artery (LAD) occlusion in 129S6 mice showed intense tracer accumulation within the infarct region. The specificity was shown in a sub-group of animals by application of the competitive inhibitor cilengitide prior to tracer injection in a subgroup of animals. Myocardial infarction (MI) significantly reduced cardiac function and resulted in pronounced left ventricular remodeling after three weeks, as measured by cardiac MRI in a separate group. Cardiac induced cells (CiC) that were derived from mESC injected intramyocardially in the therapy group significantly improved left ventricular ejection fraction (LVEF). Surprisingly, CiC transplantation resulted in significantly lower tracer accumulation seven days after MI induction. Accordingly, we successfully established the PET tracer [68Ga]-NODAGA-RGD for the assessment of αvß3 integrin expression in the healing process after MI in the mouse model. Yet, our results indicate that the mere extent of angiogenesis following MI does not serve as a sufficient prognostic marker for functional outcome.


Asunto(s)
Acetatos/química , Radioisótopos de Galio/química , Compuestos Heterocíclicos con 1 Anillo/química , Infarto del Miocardio/diagnóstico por imagen , Neovascularización Fisiológica , Oligopéptidos/química , Tomografía de Emisión de Positrones , Trasplante de Células Madre , Remodelación Ventricular , Animales , Integrina alfaVbeta3/metabolismo , Imagen por Resonancia Magnética , Ratones , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia
9.
Chemistry ; 26(16): 3571-3577, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31846108

RESUMEN

The thermodynamics of halogen bonding of a series of isostructural Group 10 metal pincer fluoride complexes of the type [(3,5-R2 -tBu POCOPtBu )MF] (3,5-R2 -tBu POCOPtBu =κ3 -C6 HR2 -2,6-(OPtBu2 )2 with R=H, tBu, COOMe; M=Ni, Pd, Pt) and iodopentafluorobenzene was investigated. Based on NMR experiments at different temperatures, all complexes 1-tBu (R=tBu, M=Ni), 2-H (R=H, M=Pd), 2-tBu (R=tBu, M=Pd), 2-COOMe (R=COOMe, M=Pd) and 3-tBu (R=tBu, M=Pt) form strong halogen bonds with Pd complexes showing significantly stronger binding to iodopentafluorobenzene. Structural and computational analysis of a model adduct of complex 2-tBu with 1,4-diiodotetrafluorobenzene as well as of structures of iodopentafluorobenzene in toluene solution shows that formation of a type I contact occurs.

10.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 7): 1011-1014, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31392015

RESUMEN

In the crystal structure of the isostructural title compounds, namely {2,6-bis-[(di-tert-butyl-phosphan-yl)-oxy]-4-hy-droxy-phen-yl}chlorido-palladium(II), [Pd(C22H39O3P2)Cl], 1, and {2,6-bis-[(di-tert-butyl-phosphan-yl)-oxy]-4-hy-droxy-phen-yl}chlorido-platinum(II), [Pt(C22H39O3P2)Cl], 2, the metal centres are coordinated in a distorted square-planar fashion by the POCOP pincer fragment and the chloride ligand. Both complexes form strong hydrogen-bonded chain structures through an inter-action of the OH group in the 4-position of the aromatic POCOP backbone with the halide ligand.

11.
Chemistry ; 23(18): 4298-4309, 2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28105660

RESUMEN

To date, a plethora of λ3 -P nitrogen-containing compounds is known. A large number of them are used as ligands in coordination chemistry and homogeneous catalysis. PN-containing compounds tend to build up cyclic moieties, which have received less attention in regard to their application as ligands in transition metal chemistry. Hence, different dehalogenation reactions of N,N-bis{chloro(aryl)-phosphino}-amines have been developed to synthesize different P-N-P containing cyclic compounds. Their coordination behavior to group VI transition metal carbonyls was explored.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA