Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Nucleic Acids Res ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874474

RESUMEN

Long terminal repeats (LTRs), which often contain promoter and enhancer sequences of intact endogenous retroviruses (ERVs), are known to be co-opted as cis-regulatory elements for fine-tuning host-coding gene expression. Since LTRs are mainly silenced by the deposition of repressive epigenetic marks, substantial activation of LTRs has been found in human cells after treatment with epigenetic inhibitors. Although the LTR12C family makes up the majority of ERVs activated by epigenetic inhibitors, how these epigenetically and transcriptionally activated LTR12C elements can regulate the host-coding gene expression remains unclear due to genome-wide alteration of transcriptional changes after epigenetic inhibitor treatments. Here, we specifically transactivated >600 LTR12C elements by using single guide RNA-based dCas9-SunTag-VP64, a site-specific targeting CRISPR activation (CRISPRa) system, with minimal off-target events. Interestingly, most of the transactivated LTR12C elements acquired the H3K27ac-marked enhancer feature, while only 20% were co-marked with promoter-associated H3K4me3 modifications. The enrichment of the H3K4me3 signal was intricately associated with downstream regions of LTR12C, such as internal regions of intact ERV9 or other types of retrotransposons. Here, we leverage an optimized CRISPRa system to identify two distinct epigenetic signatures that define LTR12C transcriptional activation, which modulate the expression of proximal protein-coding genes.

2.
Nat Aging ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867059

RESUMEN

Chronological aging correlates with epigenetic modifications at specific loci, calibrated to species lifespan. Such 'epigenetic clocks' appear conserved among mammals, but whether they are cell autonomous and restricted by maximal organismal lifespan remains unknown. We used a multilifetime murine model of repeat vaccination and memory T cell transplantation to test whether epigenetic aging tracks with cellular replication and if such clocks continue 'counting' beyond species lifespan. Here we found that memory T cell epigenetic clocks tick independently of host age and continue through four lifetimes. Instead of recording chronological time, T cells recorded proliferative experience through modification of cell cycle regulatory genes. Applying this epigenetic profile across a range of human T cell contexts, we found that naive T cells appeared 'young' regardless of organism age, while in pediatric patients, T cell acute lymphoblastic leukemia appeared to have epigenetically aged for up to 200 years. Thus, T cell epigenetic clocks measure replicative history and can continue to accumulate well-beyond organismal lifespan.

3.
bioRxiv ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38405904

RESUMEN

The RING E3 ubiquitin ligase UHRF1 is an established cofactor for DNA methylation inheritance. Nucleosomal engagement through histone and DNA interactions directs UHRF1 ubiquitin ligase activity toward lysines on histone H3 tails, creating binding sites for DNMT1 through ubiquitin interacting motifs (UIM1 and UIM2). Here, we profile contributions of UHRF1 and DNMT1 to genome-wide DNA methylation inheritance and dissect specific roles for ubiquitin signaling in this process. We reveal DNA methylation maintenance at low-density CpGs is vulnerable to disruption of UHRF1 ubiquitin ligase activity and DNMT1 ubiquitin reading activity through UIM1. Hypomethylation of low-density CpGs in this manner induces formation of partially methylated domains (PMD), a methylation signature observed across human cancers. Furthermore, disrupting DNMT1 UIM2 function abolishes DNA methylation maintenance. Collectively, we show DNMT1-dependent DNA methylation inheritance is a ubiquitin-regulated process and suggest a disrupted UHRF1-DNMT1 ubiquitin signaling axis contributes to the development of PMDs in human cancers.

4.
iScience ; 26(7): 107095, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37456850

RESUMEN

Non-small-cell lung cancer remains a deadly form of human cancer even in the era of immunotherapy with existing immunotherapy strategies currently only benefiting a minority of patients. Therefore, the derivation of treatment options, which might extend the promise of immunotherapy to more patients, remains of paramount importance. Here, we define using TCGA lung squamous and lung adenocarcinoma RNAseq datasets a significant correlation between epigenetic therapy actionable interferon genes with both predicted tumor immune score generally, and CD8A specifically. IHC validation using primary sample tissue microarrays confirmed a pronounced positive association between CD8+ T cell tumor infiltration and the interferon-associated targets, CCL5 and MDA5. We next extended these findings to the assessment of clinical trial biopsies from patients with advanced non-small-cell lung cancer treated with epigenetic therapy with and without concurrent immunotherapy. These analyses revealed treatment-associated increases in both CD8+ T cell intratumoral infiltration and microenvironment CCL5 staining intensity.

5.
Nucleic Acids Res ; 51(12): 5997-6005, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37094063

RESUMEN

CpG methylation generally occurs on both DNA strands and is essential for mammalian development and differentiation. Until recently, hemimethylation, in which only one strand is methylated, was considered to be simply a transitory state generated during DNA synthesis. The discovery that a subset of CCCTC-binding factor (CTCF) binding sites is heritably hemimethylated suggests that hemimethylation might have an unknown biological function. Here we show that the binding of CTCF is profoundly altered by which DNA strand is methylated and by the specific CTCF binding motif. CpG methylation on the motif strand can inhibit CTCF binding by up to 7-fold, whereas methylation on the opposite strand can stimulate binding by up to 4-fold. Thus, hemimethylation can alter binding by up to 28-fold in a strand-specific manner. The mechanism for sensing methylation on the opposite strand requires two critical residues, V454 and S364, within CTCF zinc fingers 7 and 4. Similar to methylation, CpG hydroxymethylation on the motif strand can inhibit CTCF binding by up to 4-fold. However, hydroxymethylation on the opposite strand removes the stimulatory effect. Strand-specific methylation states may therefore provide a mechanism to explain the transient and dynamic nature of CTCF-mediated chromatin interactions.


Asunto(s)
Factor de Unión a CCCTC , Metilación de ADN , Proteínas Represoras , Animales , Sitios de Unión , Factor de Unión a CCCTC/metabolismo , Cromatina , Islas de CpG , ADN/metabolismo , Mamíferos/genética , Proteínas Represoras/metabolismo
6.
Clin Cancer Res ; 29(11): 2052-2065, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36928921

RESUMEN

PURPOSE: On the basis of preclinical evidence of epigenetic contribution to sensitivity and resistance to immune checkpoint inhibitors (ICI), we hypothesized that guadecitabine (hypomethylating agent) and atezolizumab [anti-programmed cell death ligand 1 (PD-L1)] together would potentiate a clinical response in patients with metastatic urothelial carcinoma (UC) unresponsive to initial immune checkpoint blockade therapy. PATIENTS AND METHODS: We designed a single arm phase II study (NCT03179943) with a safety run-in to identify the recommended phase II dose of the combination therapy of guadecitabine and atezolizumab. Patients with recurrent/advanced UC who had previously progressed on ICI therapy with programmed cell death protein 1 or PD-L1 targeting agents were eligible. Preplanned correlative analysis was performed to characterize peripheral immune dynamics and global DNA methylation, transcriptome, and immune infiltration dynamics of patient tumors. RESULTS: Safety run-in enrolled 6 patients and phase II enrolled 15 patients before the trial was closed for futility. No dose-limiting toxicity was observed. Four patients, with best response of stable disease (SD), exhibited extended tumor control (8-11 months) and survival (>14 months). Correlative analysis revealed lack of DNA demethylation in tumors after 2 cycles of treatment. Increased peripheral immune activation and immune infiltration in tumors after treatment correlated with progression-free survival and SD. Furthermore, high IL6 and IL8 levels in the patients' plasma was associated with short survival. CONCLUSIONS: No RECIST responses were observed after combination therapy in this trial. Although we could not detect the anticipated tumor-intrinsic effects of guadecitabine, the addition of hypomethylating agent to ICI therapy induced immune activation in a few patients, which associated with longer patient survival.


Asunto(s)
Antineoplásicos , Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Antineoplásicos/uso terapéutico , Carcinoma de Células Transicionales/tratamiento farmacológico , Carcinoma de Células Transicionales/secundario , Antígeno B7-H1 , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico
7.
Cell Rep ; 42(1): 112016, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36662621

RESUMEN

Tumors with mutations in chromatin regulators present attractive targets for DNA hypomethylating agent 5-aza-2'-deoxycytidine (DAC) therapy, which further disrupts cancer cells' epigenomic fidelity and reactivates transposable element (TE) expression to drive viral mimicry responses. SETD2 encodes a histone methyltransferase (H3K36me3) and is prevalently mutated in advanced kidney cancers. Here, we show that SETD2-mutant kidney cancer cells are especially sensitive in vitro and in vivo to DAC treatment. We find that the viral mimicry response are direct consequences of mis-splicing events, such as exon inclusions or extensions, triggered by DAC treatment in an SETD2-loss context. Comprehensive epigenomic analysis reveals H3K9me3 deposition, rather than DNA methylation dynamics, across intronic TEs might contribute to elevated mis-splicing rates. Through epigenomic and transcriptomic analyses, we show that SETD2-deficient kidney cancers are prone to mis-splicing, which can be therapeutically exacerbated with DAC treatment to increase viral mimicry activation and provide synergy with combinatorial immunotherapy approaches.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Histonas/metabolismo , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Carcinoma de Células Renales/metabolismo , Cromatina , ARN
8.
Cancer Lett ; 548: 215899, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36087682

RESUMEN

The development of more effective targeted therapies for hepatocellular carcinoma (HCC) patients due to its aggressiveness is urgently needed. DNA methyltransferase inhibitors (DNMTis) represented the first clinical breakthrough to target aberrant cancer epigenomes. However, their clinical efficacies are still limited, in part due to an "epigenetic switch" in which a large group of genes that are demethylated by DNMTi treatment remain silenced by polycomb repressive complex 2 (PRC2) occupancy. EZH2 is the member of PRC2 that catalyzes the placement of H3K27me3 marks. EZH2 overexpression is correlated with poor HCC patient survival. We tested the combination of a DNMTi (5-aza-2'-deoxycytidine, DAC) and the EZH2 inhibitor (EZH2i) GSK126 in human HCC cell lines on drug sensitivity, DNA methylation, nucleosome accessibility, and gene expression profiles. Compared with single agent treatments, all HCC cell lines studied showed increased sensitivity after receiving both drugs concomitant with prolonged anti-proliferative changes and sustained reactivation of nascently-silenced genes. The increased number of up-regulated genes after combination treatment correlated with prolonged anti-proliferation effects and increased nucleosome accessibility. Combination treatments also activate demethylated promoters that are repressed by PRC2 occupancy. Furthermore, 13-31% of genes down-regulated by DNA methylation in primary HCC tumors were reactivated through this combination treatment scheme in vitro. Finally, the combination treatment also exacerbates anti-tumor immune responses, while most of these genes were downregulated in over 50% of primary HCC tumors. We have linked the anti-tumor effects of DAC and GSK126 combination treatments to detailed epigenetic alterations in HCC cells, identified potential therapeutic targets and provided a rationale for treatment efficacy for HCC patients.


Asunto(s)
Carcinoma Hepatocelular , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , ADN , Decitabina/farmacología , Decitabina/uso terapéutico , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Nucleosomas , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo
9.
Cell Genom ; 2(7)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35873672

RESUMEN

We have developed a mouse DNA methylation array that contains 296,070 probes representing the diversity of mouse DNA methylation biology. We present a mouse methylation atlas as a rich reference resource of 1,239 DNA samples encompassing distinct tissues, strains, ages, sexes, and pathologies. We describe applications for comparative epigenomics, genomic imprinting, epigenetic inhibitors, patient-derived xenograft assessment, backcross tracing, and epigenetic clocks. We dissect DNA methylation processes associated with differentiation, aging, and tumorigenesis. Notably, we find that tissue-specific methylation signatures localize to binding sites for transcription factors controlling the corresponding tissue development. Age-associated hypermethylation is enriched at regions of Polycomb repression, while hypomethylation is enhanced at regions bound by cohesin complex members. Apc Min/+ polyp-associated hypermethylation affects enhancers regulating intestinal differentiation, while hypomethylation targets AP-1 binding sites. This Infinium Mouse Methylation BeadChip (version MM285) is widely accessible to the research community and will accelerate high-sample-throughput studies in this important model organism.

10.
Commun Biol ; 5(1): 528, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35654826

RESUMEN

The DNA methylation status of the X-chromosome in cancer cells is often overlooked because of computational difficulties. Most of the CpG islands on the X-chromosome are mono-allelically methylated in normal female cells and only present as a single copy in male cells. We treated two colorectal cancer cell lines from a male (HCT116) and a female (RKO) with increasing doses of a DNA methyltransferase 1 (DNMT1)-specific inhibitor (GSK3685032/GSK5032) over several months to remove as much non-essential CpG methylation as possible. Profiling of the remaining DNA methylome revealed an unexpected, enriched retention of DNA methylation on the X-chromosome. Strikingly, the identified retained X-chromosome DNA methylation patterns accurately predicted de novo DNA hypermethylation in colon cancer patient methylomes in the TCGA COAD/READ cohort. These results suggest that a re-examination of tumors for X-linked DNA methylation changes may enable greater understanding of the importance of epigenetic silencing of cancer related genes.


Asunto(s)
Metilación de ADN , Neoplasias , Islas de CpG , ADN , Femenino , Humanos , Masculino , Neoplasias/genética , Cromosoma X
11.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33723081

RESUMEN

Genomic imprinting occurs before fertilization, impacts every cell of the developing child, and may be sensitive to environmental perturbations. The noncoding RNA, nc886 (also called VTRNA2-1) is the only known example of the ∼100 human genes imprinted by DNA methylation, that shows polymorphic imprinting in the population. The nc886 gene is part of an ∼1.6-kb differentially methylated region (DMR) that is methylated in the oocyte and silenced on the maternal allele in about 75% of humans worldwide. Here, we show that the presence or absence of imprinting at the nc886 DMR in an individual is consistent across different tissues, confirming that the imprint is established before cellular differentiation and is maintained into adulthood. We investigated the relationships between the frequency of imprinting in newborns and maternal age, alcohol consumption and cigarette smoking before conception in more than 1,100 mother/child pairs from South Africa. The probability of imprinting in newborns was increased in older mothers and decreased in mothers who drank alcohol before conception. On the other hand, cigarette smoking had no apparent relationship with the frequency of imprinting. These data show an epigenetic change during oocyte maturation which is potentially subject to environmental influence. Much focus has been placed on avoiding alcohol consumption during pregnancy, but our data suggest that drinking before conception may affect the epigenome of the newborn.


Asunto(s)
Consumo de Bebidas Alcohólicas/efectos adversos , Metilación de ADN , Epigénesis Genética , Impresión Genómica , Exposición Materna/efectos adversos , Oocitos/metabolismo , ARN no Traducido/genética , Alelos , Islas de CpG , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Edad Materna , Embarazo
12.
Nature ; 586(7827): 151-155, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32968275

RESUMEN

CpG methylation by de novo DNA methyltransferases (DNMTs) 3A and 3B is essential for mammalian development and differentiation and is frequently dysregulated in cancer1. These two DNMTs preferentially bind to nucleosomes, yet cannot methylate the DNA wrapped around the nucleosome core2, and they favour the methylation of linker DNA at positioned nucleosomes3,4. Here we present the cryo-electron microscopy structure of a ternary complex of catalytically competent DNMT3A2, the catalytically inactive accessory subunit DNMT3B3 and a nucleosome core particle flanked by linker DNA. The catalytic-like domain of the accessory DNMT3B3 binds to the acidic patch of the nucleosome core, which orients the binding of DNMT3A2 to the linker DNA. The steric constraints of this arrangement suggest that nucleosomal DNA must be moved relative to the nucleosome core for de novo methylation to occur.


Asunto(s)
Microscopía por Crioelectrón , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Nucleosomas/metabolismo , Animales , Biocatálisis , Ensamble y Desensamble de Cromatina , ADN/química , ADN/metabolismo , Metilación de ADN , ADN Metiltransferasa 3A , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Modelos Moleculares , Nucleosomas/química , Unión Proteica , Dominios Proteicos , Xenopus/genética , ADN Metiltransferasa 3B
13.
Proc Natl Acad Sci U S A ; 117(32): 19359-19366, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32719115

RESUMEN

Multicellular eukaryotic genomes show enormous differences in size. A substantial part of this variation is due to the presence of transposable elements (TEs). They contribute significantly to a cell's mass of DNA and have the potential to become involved in host gene control. We argue that the suppression of their activities by methylation of the C-phosphate-G (CpG) dinucleotide in DNA is essential for their long-term accommodation in the host genome and, therefore, to its expansion. An inevitable consequence of cytosine methylation is an increase in C-to-T transition mutations via deamination, which causes CpG loss. Cytosine deamination is often needed for TEs to take on regulatory functions in the host genome. Our study of the whole-genome sequences of 53 organisms showed a positive correlation between the size of a genome and the percentage of TEs it contains, as well as a negative correlation between size and the CpG observed/expected (O/E) ratio in both TEs and the host DNA. TEs are seldom found at promoters and transcription start sites, but they are found more at enhancers, particularly after they have accumulated C-to-T and other mutations. Therefore, the methylation of TE DNA allows for genome expansion and also leads to new opportunities for gene control by TE-based regulatory sites.


Asunto(s)
Metilación de ADN , Eucariontes/genética , Genoma , Islas de CpG , Citosina/metabolismo , Elementos Transponibles de ADN , Eucariontes/metabolismo , Regulación de la Expresión Génica , Tamaño del Genoma , Mutación , Regiones Promotoras Genéticas
14.
Cancer Res ; 80(12): 2441-2450, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32245794

RESUMEN

The DNA methyltransferase inhibitors (DNMTi) 5-azacytidine and 5-aza-2-deoxycytidine have been approved for the treatment of different types of hematologic malignancies. However, only about 50% of patients respond to treatment. Therefore, a more comprehensive understanding of the molecular changes in patients treated with DNMTi is needed. Here, we examined gene expression profiles in a total of 150 RNA samples from two adult cohorts and one pediatric cohort with hematologic cancers taken before, during, and after treatment with 5-azacytidine (40 patients; 15 nonresponders, 25 responders). Using each patient as their own control, malignant cells showed preferential activation of a subset of evolutionarily young transposable elements (TE), including endogenous retroviral long terminal repeats (LTR), short and long interspersed nuclear elements (SINE and LINE), and the type I IFN pathway in responders, all independent of disease classification. Transfection of eight upregulated LTRs into recipient human cells in culture showed robust and heterogenous activation of six genes in the type I IFN pathway. These results, obtained in diverse hematologic disease entities, show that common targets (TE) activated by the same drug (5-azacytidine) elicit an immune response, which may be important for patient's responses to DNMTi. SIGNIFICANCE: Activation of specific classes of evolutionarily young transposable elements can lead to activation of the innate immune system.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Azacitidina/farmacología , Elementos Transponibles de ADN/efectos de los fármacos , Neoplasias Hematológicas/tratamiento farmacológico , Inmunidad Innata/genética , Anciano , Anciano de 80 o más Años , Antimetabolitos Antineoplásicos/uso terapéutico , Azacitidina/uso terapéutico , Estudios de Cohortes , Elementos Transponibles de ADN/genética , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/inmunología , Retrovirus Endógenos/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/inmunología , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Interferón Tipo I/metabolismo , Masculino , Persona de Mediana Edad , Imitación Molecular/inmunología , RNA-Seq , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/inmunología , Regulación hacia Arriba/efectos de los fármacos
15.
Clin Epigenetics ; 11(1): 143, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31623675

RESUMEN

BACKGROUND: Patients with haematological malignancies are often vitamin C deficient, and vitamin C is essential for the TET-induced conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), the first step in active DNA demethylation. Here, we investigate whether oral vitamin C supplementation can correct vitamin C deficiency and affect the 5hmC/5mC ratio in patients with myeloid cancers treated with DNA methyltransferase inhibitors (DNMTis). RESULTS: We conducted a randomized, double-blinded, placebo-controlled pilot trial (NCT02877277) in Danish patients with myeloid cancers performed during 3 cycles of DNMTi-treatment (5-azacytidine, 100 mg/m2/d for 5 days in 28-day cycles) supplemented by oral dose of 500 mg vitamin C (n = 10) or placebo (n = 10) daily during the last 2 cycles. Fourteen patients (70%) were deficient in plasma vitamin C (< 23 µM) and four of the remaining six patients were taking vitamin supplements at inclusion. Global DNA methylation was significantly higher in patients with severe vitamin C deficiency (< 11.4 µM; 4.997 vs 4.656% 5mC relative to deoxyguanosine, 95% CI [0.126, 0.556], P = 0.004). Oral supplementation restored plasma vitamin C levels to the normal range in all patients in the vitamin C arm (mean increase 34.85 ± 7.94 µM, P = 0.0004). We show for the first time that global 5hmC/5mC levels were significantly increased in mononuclear myeloid cells from patients receiving oral vitamin C compared to placebo (0.037% vs - 0.029%, 95% CI [- 0.129, - 0.003], P = 0.041). CONCLUSIONS: Normalization of plasma vitamin C by oral supplementation leads to an increase in the 5hmC/5mC ratio compared to placebo-treated patients and may enhance the biological effects of DNMTis. The clinical efficacy of oral vitamin C supplementation to DNMTis should be investigated in a large randomized, placebo-controlled clinical trial. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02877277 . Registered on 9 August 2016, retrospectively registered.


Asunto(s)
Ácido Ascórbico/administración & dosificación , Azacitidina/administración & dosificación , Metilación de ADN/efectos de los fármacos , Leucemia Mieloide/terapia , Síndromes Mielodisplásicos/terapia , Administración Oral , Anciano , Anciano de 80 o más Años , Ácido Ascórbico/sangre , Ácido Ascórbico/farmacología , Azacitidina/farmacología , Islas de CpG/efectos de los fármacos , Dinamarca , Método Doble Ciego , Epigénesis Genética/efectos de los fármacos , Femenino , Humanos , Leucemia Mieloide/sangre , Leucemia Mieloide/genética , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/sangre , Síndromes Mielodisplásicos/genética , Proyectos Piloto
16.
Nat Rev Cancer ; 19(3): 151-161, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30723290

RESUMEN

DNA methylation inhibitors have become the mainstay for treatment of certain haematological malignancies. In addition to their abilities to reactivate genes, including tumour suppressors, that have acquired DNA methylation during carcinogenesis, they induce the expression of thousands of transposable elements including endogenous retroviruses and latent cancer testis antigens normally silenced by DNA methylation in most somatic cells. This results in a state of viral mimicry in which treated cells mount an innate immune response by turning on viral defence genes and potentially expressing neoantigens. Furthermore, these changes mediated by DNA methylation inhibitors can also alter the function of immune cells relevant to acquired immunity. Additionally, other inhibitors of epigenetic processes, such as histone deacetylases, methylases and demethylases, can elicit similar effects either individually or in combinations with DNA methylation inhibitors. These findings together with rapid development of immunotherapies open new avenues for cancer treatment.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Animales , Epigenómica/métodos , Neoplasias Hematológicas/inmunología , Humanos , Inmunoterapia/métodos , Oncología Médica/métodos
17.
Proc Natl Acad Sci U S A ; 115(51): E11970-E11977, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30509985

RESUMEN

Genomic imprinting mediated by DNA methylation restricts gene expression to a single allele determined by parental origin and is not generally considered to be under genetic or environmental influence. Here, we focused on a differentially methylated region (DMR) of approximately 1.9 kb that includes a 101-bp noncoding RNA gene (nc886/VTRNA2-1), which is maternally imprinted in ∼75% of humans. This is unlike other imprinted genes, which demonstrate monoallelic methylation in 100% of individuals. The DMR includes a CTCF binding site on the centromeric side defining the DMR boundary and is flanked by a CTCF binding site on the telomeric side. The centromeric CTCF binding site contains an A/C polymorphism (rs2346018); the C allele is associated with less imprinting. The frequency of imprinting of the nc886 DMR in infants was linked to at least two nongenetic factors, maternal age at delivery and season of conception. In a separate cohort, nc886 imprinting was associated with lower body mass index in children at 5 y of age. Thus, we propose that the imprinting status of the nc886 DMR is "tunable" in that it is associated with maternal haplotype and prenatal environment. This provides a potential mechanism for transmitting information, with phenotypic consequences, from mother to child.


Asunto(s)
Metilación de ADN , Epigenómica , Impresión Genómica , Polimorfismo Genético , Alelos , Sitios de Unión , Factor de Unión a CCCTC , Niño , Preescolar , Proteínas de Unión al ADN/metabolismo , Femenino , Regulación de la Expresión Génica , Haplotipos , Humanos , Edad Materna , MicroARNs/genética , Madres , Embarazo , ARN no Traducido/genética
18.
Cancer Res ; 78(20): 5754-5766, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30185548

RESUMEN

Ovarian cancer ranks as the most deadly gynecologic cancer, and there is an urgent need to develop more effective therapies. Previous studies have shown that G9A, a histone methyltransferase that catalyzes mono- and dimethylation of histone H3 lysine9, is highly expressed in ovarian cancer tumors, and its overexpression is associated with poor prognosis. Here we report that pharmacologic inhibition of G9A in ovarian cancer cell lines with high levels of G9A expression induces synergistic antitumor effects when combined with the DNA methylation inhibitor (DNMTi) 5-aza-2'-deoxycytidine (5-aza-CdR). These antitumor effects included upregulation of endogenous retroviruses (ERV), activation of the viral defense response, and induction of cell death, which have been termed "viral mimicry" effects induced by DNMTi. G9Ai treatment further reduced H3K9me2 levels within the long terminal repeat regions of ERV, resulting in further increases of ERV expression and enhancing "viral mimicry" effects. In contrast, G9Ai and 5-aza-CdR were not synergistic in cell lines with low basal G9A levels. Taken together, our results suggest that the synergistic effects of combination treatment with DNMTi and G9Ai may serve as a novel therapeutic strategy for patients with ovarian cancer with high levels of G9A expression.Significance: Dual inhibition of DNA methylation and histone H3 lysine 9 dimethylation by 5-aza-CdR and G9Ai results in synergistic upregulation of ERV and induces an antiviral response, serving as a basis for exploring this novel combination treatment in patients with ovarian cancer. Cancer Res; 78(20); 5754-66. ©2018 AACR.


Asunto(s)
Antineoplásicos/farmacología , Metilación de ADN/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Neoplasias Ováricas/metabolismo , Azacitidina/farmacología , Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular , Sinergismo Farmacológico , Retrovirus Endógenos/metabolismo , Femenino , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/virología , Pronóstico , Análisis de Secuencia de ARN , Activación Transcripcional/efectos de los fármacos
19.
Genome Res ; 28(8): 1147-1157, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29970451

RESUMEN

We provide a comprehensive genomic and epigenomic map of the more than 500,000 endogenous retroviruses (ERVs) and fragments that populate the intergenic regions of the human genome. The repressive epigenetic marks associated with the ERVs, particularly long terminal repeats (LTRs), show a remarkable switch in silencing mechanisms, depending on the evolutionary age of the LTRs. Young LTRs tend to be CpG rich and are mainly suppressed by DNA methylation, whereas intermediate age LTRs are associated predominantly with histone modifications, particularly histone H3 lysine 9 (H3K9) methylation. Young LTRs can be reactivated by treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR) alone, but their level of expression is much increased by 5-aza-CdR treatment plus knockdown of one of several H3K9 methyltransferases or of the H3K27 methyltransferase EZH2. The removal of cytosine methylation led to rapid, widespread increases in H3K9me3 in the LTRs. Intermediate age LTRs had lower CpG densities and were not up-regulated by 5-aza-CdR treatment, but they were sensitive to knockdown of H3K9 methyltransferases. Unlike the situation in embryonic stem cells, the polycomb repressive complex (PRC2) has a minor role in LTR suppression by itself and is only a player after removal of cytosine methylation in the analyzed cancer cell line. Up-regulation of LTRs and induction of "viral mimicry" is rapidly becoming of interest for predicting cancer patient response to epigenetic therapies. Understanding the mechanism for LTR suppression is of major importance in order to improve patient treatment strategies.


Asunto(s)
Islas de CpG/genética , Metilación de ADN/genética , Retrovirus Endógenos/genética , Secuencias Repetidas Terminales/genética , Células Madre Embrionarias/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Silenciador del Gen , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Humanos , Complejo Represivo Polycomb 2/genética , Procesamiento Proteico-Postraduccional
20.
Methods Mol Biol ; 1708: 267-284, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29224149

RESUMEN

Various methodologies are available to interrogate specific components of epigenetic mechanisms such as DNA methylation or nucleosome occupancy at both the locus-specific and the genome-wide level. It has become increasingly clear, however, that comprehension of the functional interactions between epigenetic mechanisms is critical for understanding how cellular transcription programs are regulated or deregulated during normal and disease development. The Nucleosome Occupancy and Methylome sequencing (NOMe-seq) assay allows us to directly measure the relationship between DNA methylation and nucleosome occupancy by taking advantage of the methyltransferase M.CviPI, which methylates unprotected GpC dinucleotides to create a footprint of chromatin accessibility. This assay generates dual nucleosome occupancy and DNA methylation information at a single-DNA molecule resolution using as little as 200,000 cells and in as short as 15 min reaction time. DNA methylation levels and nucleosome occupancy status of genomic regions of interest can be subsequently interrogated by cloning PCR-amplified bisulfite DNA and sequencing individual clones. Alternatively, NOMe-seq can be combined with next-generation sequencing in order to generate an integrated global map of DNA methylation and nucleosome occupancy, which allows for comprehensive examination as to how these epigenetic components correlate with each other.


Asunto(s)
Metilación de ADN , Nucleosomas/metabolismo , Análisis de Secuencia de ADN/métodos , Islas de CpG , Epigénesis Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Metiltransferasas/metabolismo , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA