Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Adv ; 9(48): eadg8495, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38019912

RESUMEN

Reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs) is inefficient, with heterogeneity among transcription factor (TF) trajectories driving divergent cell states. Nevertheless, the impact of TF dynamics on reprogramming efficiency remains uncharted. We develop a system that accurately reports OCT4 protein levels in live cells and use it to reveal the trajectories of OCT4 in successful reprogramming. Our system comprises a synthetic genetic circuit that leverages noise to generate a wide range of OCT4 trajectories and a microRNA targeting endogenous OCT4 to set total cellular OCT4 protein levels. By fusing OCT4 to a fluorescent protein, we are able to track OCT4 trajectories with clonal resolution via live-cell imaging. We discover that a supraphysiological, stable OCT4 level is required, but not sufficient, for efficient iPSC colony formation. Our synthetic genetic circuit design and high-throughput live-imaging pipeline are generalizable for investigating TF dynamics for other cell fate programming applications.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Humanos , Diferenciación Celular/genética , Células Cultivadas , Reprogramación Celular/genética , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
bioRxiv ; 2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37090676

RESUMEN

Within the thymus, regulation of the cellular cross-talk directing T cell development is dependent on spatial interactions within specialized niches. To create a holistic, spatially defined map of tissue niches guiding postnatal T cell development we employed the multidimensional imaging platform CO-detection by indEXing (CODEX), as well as CITE-seq and ATAC-seq. We generated age-matched 4-5-month-old postnatal thymus datasets for male and female donors, and identify significant sex differences in both T cell and thymus biology. We demonstrate a crucial role for JAG ligands in directing thymic-like dendritic cell development, reveal important functions of a novel population of ECM- fibroblasts, and characterize the medullary niches surrounding Hassall's corpuscles. Together, these data represent a unique age-matched spatial multiomic resource to investigate how sex-based differences in thymus regulation and T cell development arise, and provide an essential resource to understand the mechanisms underlying immune function and dysfunction in males and females.

4.
bioRxiv ; 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36747813

RESUMEN

Reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs) is inefficient, with heterogeneity among transcription factor (TF) trajectories driving divergent cell states. Nevertheless, the impact of TF dynamics on reprogramming efficiency remains uncharted. Here, we identify the successful reprogramming trajectories of the core pluripotency TF, OCT4, and design a genetic controller that enforces such trajectories with high precision. By combining a genetic circuit that generates a wide range of OCT4 trajectories with live-cell imaging, we track OCT4 trajectories with clonal resolution and find that a distinct constant OCT4 trajectory is required for colony formation. We then develop a synthetic genetic circuit that yields a tight OCT4 distribution around the identified trajectory and outperforms in terms of reprogramming efficiency other circuits that less accurately regulate OCT4. Our synthetic biology approach is generalizable for identifying and enforcing TF dynamics for cell fate programming applications.

5.
Stem Cell Reports ; 18(1): 377-393, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36332630

RESUMEN

The mechanism by which morphogenetic signals engage the regulatory networks responsible for early embryonic tissue patterning is incompletely understood. Here, we developed a minimal gene regulatory network (GRN) model of human pluripotent stem cell (hPSC) lineage commitment and embedded it into "cellular" agents that respond to a dynamic morphogenetic signaling microenvironment. Simulations demonstrated that GRN wiring had significant non-intuitive effects on tissue pattern order, composition, and dynamics. Experimental perturbation of GRN connectivities supported model predictions and demonstrated the role of OCT4 as a master regulator of peri-gastrulation fates. Our so-called GARMEN strategy provides a multiscale computational platform to understand how single-cell-based regulatory interactions scale to tissue domains. This foundation provides new opportunities to simulate the impact of network motifs on normal and aberrant tissue development.


Asunto(s)
Células Madre Pluripotentes , Humanos , Gastrulación/genética , Transducción de Señal , Redes Reguladoras de Genes , Mesodermo , Diferenciación Celular , Endodermo , Regulación del Desarrollo de la Expresión Génica
6.
Mol Syst Biol ; 18(11): e10886, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36366891

RESUMEN

During development, cell state transitions are coordinated through changes in the identity of molecular regulators in a cell type- and dose-specific manner. The ability to rationally engineer such transitions in human pluripotent stem cells (hPSC) will enable numerous applications in regenerative medicine. Herein, we report the generation of synthetic gene circuits that can detect a desired cell state using AND-like logic integration of endogenous miRNAs (classifiers) and, upon detection, produce fine-tuned levels of output proteins using an miRNA-mediated output fine-tuning technology (miSFITs). Specifically, we created an "hPSC ON" circuit using a model-guided miRNA selection and circuit optimization approach. The circuit demonstrates robust PSC-specific detection and graded output protein production. Next, we used an empirical approach to create an "hPSC-Off" circuit. This circuit was applied to regulate the secretion of endogenous BMP4 in a state-specific and fine-tuned manner to control the composition of differentiating hPSCs. Our work provides a platform for customized cell state-specific control of desired physiological factors in hPSC, laying the foundation for programming cell compositions in hPSC-derived tissues and beyond.


Asunto(s)
MicroARNs , Células Madre Pluripotentes , Humanos , Genes Sintéticos , Diferenciación Celular/genética , Células Madre Pluripotentes/metabolismo , Redes Reguladoras de Genes , MicroARNs/genética , MicroARNs/metabolismo , Proteínas/metabolismo
7.
Nat Commun ; 13(1): 1720, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361767

RESUMEN

Engineered signaling networks can impart cells with new functionalities useful for directing differentiation and actuating cellular therapies. For such applications, the engineered networks must be tunable, precisely regulate target gene expression, and be robust to perturbations within the complex context of mammalian cells. Here, we use bacterial two-component signaling proteins to develop synthetic phosphoregulation devices that exhibit these properties in mammalian cells. First, we engineer a synthetic covalent modification cycle based on kinase and phosphatase proteins derived from the bifunctional histidine kinase EnvZ, enabling analog tuning of gene expression via its response regulator OmpR. By regulating phosphatase expression with endogenous miRNAs, we demonstrate cell-type specific signaling responses and a new strategy for accurate cell type classification. Finally, we implement a tunable negative feedback controller via a small molecule-stabilized phosphatase, reducing output expression variance and mitigating the context-dependent effects of off-target regulation and resource competition. Our work lays the foundation for establishing tunable, precise, and robust control over cell behavior with synthetic signaling networks.


Asunto(s)
Proteínas Bacterianas , Fosfotransferasas , Animales , Histidina Quinasa/genética , Mamíferos , Fosforilación , Transducción de Señal
8.
Cell Syst ; 12(6): 561-592, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34139166

RESUMEN

The rise of systems biology has ushered a new paradigm: the view of the cell as a system that processes environmental inputs to drive phenotypic outputs. Synthetic biology provides a complementary approach, allowing us to program cell behavior through the addition of synthetic genetic devices into the cellular processor. These devices, and the complex genetic circuits they compose, are engineered using a design-prototype-test cycle, allowing for predictable device performance to be achieved in a context-dependent manner. Within mammalian cells, context effects impact device performance at multiple scales, including the genetic, cellular, and extracellular levels. In order for synthetic genetic devices to achieve predictable behaviors, approaches to overcome context dependence are necessary. Here, we describe control systems approaches for achieving context-aware devices that are robust to context effects. We then consider cell fate programing as a case study to explore the potential impact of context-aware devices for regenerative medicine applications.


Asunto(s)
Redes Reguladoras de Genes , Biología Sintética , Animales , Mamíferos
9.
Nat Commun ; 11(1): 5690, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33173034

RESUMEN

Synthetic biology has the potential to bring forth advanced genetic devices for applications in healthcare and biotechnology. However, accurately predicting the behavior of engineered genetic devices remains difficult due to lack of modularity, wherein a device's output does not depend only on its intended inputs but also on its context. One contributor to lack of modularity is loading of transcriptional and translational resources, which can induce coupling among otherwise independently-regulated genes. Here, we quantify the effects of resource loading in engineered mammalian genetic systems and develop an endoribonuclease-based feedforward controller that can adapt the expression level of a gene of interest to significant resource loading in mammalian cells. Near-perfect adaptation to resource loads is facilitated by high production and catalytic rates of the endoribonuclease. Our design is portable across cell lines and enables predictable tuning of controller function. Ultimately, our controller is a general-purpose device for predictable, robust, and context-independent control of gene expression.


Asunto(s)
Endorribonucleasas/genética , Ingeniería Genética/métodos , Mamíferos/genética , Biología Sintética/métodos , Animales , Línea Celular , Expresión Génica , Humanos , Modelos Biológicos
10.
Nucleic Acids Res ; 47(18): e106, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31372658

RESUMEN

Biological research is relying on increasingly complex genetic systems and circuits to perform sophisticated operations in living cells. Performing these operations often requires simultaneous delivery of many genes, and optimizing the stoichiometry of these genes can yield drastic improvements in performance. However, sufficiently sampling the large design space of gene expression stoichiometries in mammalian cells using current methods is cumbersome, complex, or expensive. We present a 'poly-transfection' method as a simple yet high-throughput alternative that enables comprehensive evaluation of genetic systems in a single, readily-prepared transfection sample. Each cell in a poly-transfection represents an independent measurement at a distinct gene expression stoichiometry, fully leveraging the single-cell nature of transfection experiments. We first benchmark poly-transfection against co-transfection, showing that titration curves for commonly-used regulators agree between the two methods. We then use poly-transfections to efficiently generate new insights, for example in CRISPRa and synthetic miRNA systems. Finally, we use poly-transfection to rapidly engineer a difficult-to-optimize miRNA-based cell classifier for discriminating cancerous cells. One-pot evaluation enabled by poly-transfection accelerates and simplifies the design of genetic systems, providing a new high-information strategy for interrogating biology.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Transfección/métodos , Animales , Sistemas CRISPR-Cas/genética , Expresión Génica/genética , Humanos , MicroARNs/genética
11.
Synth Biol (Oxf) ; 4(1): ysz010, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32995535

RESUMEN

Synthetic biology requires students and scientists to draw upon knowledge and expertise from many disciplines. While this diversity is one of the field's primary strengths, it also makes it challenging for newcomers to acquire the background knowledge necessary to thrive. To address this gap, we developed a course that provides a structured approach to learning the biological principles and theoretical underpinnings of synthetic biology. Our course, Principles of Synthetic Biology (PoSB), was released on the massively open online course platform edX in 2016. PoSB seeks to teach synthetic biology through five key fundamentals: (i) parts and layers of abstraction, (ii) biomolecular modeling, (iii) digital logic abstraction, (iv) circuit design principles and (v) extended circuit modalities. In this article, we describe the five fundamentals, our formulation of the course, and impact and metrics data from two runs of the course through the edX platform.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA