Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Aesthet Surg J ; 36(1): 93-104, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26063833

RESUMEN

BACKGROUND: Fat grafting has become popular for repair of postsurgical/postradiation defects after head/neck cancers resection. Fat graft supplementation with adipose tissue-derived stromal/stem cells (ASCs) is proposed to improve graft viability/efficacy, although the impact of ASCs on head/neck cancer cells is unknown. OBJECTIVES: To determine whether ASCs affect growth, migration, and metastasis of human head/neck cancer. METHODS: Human Cal-27 and SCC-4 head/neck cancer cells were co-cultured human ASCs, or treated with ASC conditioned medium (CM), and cancer cell growth/migration was assessed by MTT, cell count, and scratch/wound healing assays in vitro. Co-injection of 3 × 10(6) Cal-27/green fluorescent protein (GFP) cells and ASCs into the flank of NUDE mice assessed ASC effect on tumor growth/morphology. Quantitation of human chromosome 17 DNA in mouse organs assessed ASC effects on micrometastasis. Primary tumors were evaluated for markers of epithelial-to-mesenchymal transition, matrix metalloproteinases, and angiogenesis by immunohistochemistry. RESULTS: Co-culture of Cal-27 or SCC-4 cells with ASCs from 2 different donors or ASC CM had no effect on cell growth in vitro. However, ASC CM stimulated Cal-27 and SCC-4 migration. Co-injection of ASCs from 2 different donors with Cal-27 cells did not affect tumor volume at 6 weeks, but increased Cal-27 micrometastasis to the brain. Evaluation of tumors sections from 1 ASC donor co-injection revealed that ASCs were viable and well integrated with Cal-27/GFP cells. These tumors exhibited increased MMP2, MMP9, IL-8, and microvessel density. CONCLUSIONS: Human ASCs did not alter growth of human head/neck cancer cells or tumor xenografts, but stimulated migration and early micrometastasis to mouse brain.


Asunto(s)
Tejido Adiposo/metabolismo , Neoplasias Encefálicas/secundario , Neoplasias de Cabeza y Cuello/patología , Xenoinjertos/metabolismo , Células Madre/metabolismo , Células del Estroma/metabolismo , Tejido Adiposo/citología , Animales , Neoplasias Encefálicas/metabolismo , Carcinoma de Células Escamosas , Proliferación Celular , Células Cultivadas , Femenino , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Ratones , Ratones Desnudos , Trasplante Heterólogo
2.
PLoS One ; 9(2): e89595, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586900

RESUMEN

BACKGROUND: Fat grafting is used to restore breast defects after surgical resection of breast tumors. Supplementing fat grafts with adipose tissue-derived stromal/stem cells (ASCs) is proposed to improve the regenerative/restorative ability of the graft and retention. However, long term safety for ASC grafting in proximity of residual breast cancer cells is unknown. The objective of this study was to determine the impact of human ASCs derived from abdominal lipoaspirates of three donors, on a human breast cancer model that exhibits early metastasis. METHODOLOGY/PRINCIPAL FINDINGS: Human MDA-MB-231 breast cancer cells represents "triple negative" breast cancer that exhibits early micrometastasis to multiple mouse organs [1]. Human ASCs were derived from abdominal adipose tissue from three healthy female donors. Indirect co-culture of MDA-MB-231 cells with ASCs, as well as direct co-culture demonstrated that ASCs had no effect on MDA-MB-231 growth. Indirect co-culture, and ASC conditioned medium (CM) stimulated migration of MDA-MB-231 cells. ASC/RFP cells from two donors co-injected with MDA-MB-231/GFP cells exhibited a donor effect for stimulation of primary tumor xenografts. Both ASC donors stimulated metastasis. ASC/RFP cells were viable, and integrated with MDA-MB-231/GFP cells in the tumor. Tumors from the co-injection group of one ASC donor exhibited elevated vimentin, matrix metalloproteinase-9 (MMP-9), IL-8, VEGF and microvessel density. The co-injection group exhibited visible metastases to the lung/liver and enlarged spleen not evident in mice injected with MDA-MB-231/GFP alone. Quantitation of the total area of GFP fluorescence and human chromosome 17 DNA in mouse organs, H&E stained paraffin sections and fluorescent microscopy confirmed multi-focal metastases to lung/liver/spleen in the co-injection group without evidence of ASC/RFP cells. CONCLUSIONS: Human ASCs derived from abdominal lipoaspirates of two donors stimulated metastasis of MDA-MB-231 breast tumor xenografts to multiple mouse organs. MDA-MB-231 tumors co-injected with ASCs from one donor exhibited partial EMT, expression of MMP-9, and increased angiogenesis.


Asunto(s)
Tejido Adiposo/citología , Células Madre/fisiología , Células del Estroma/fisiología , Neoplasias de la Mama Triple Negativas/patología , Animales , Medios de Cultivo Condicionados , Femenino , Humanos , Interleucina-8/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Mol Cancer Ther ; 11(9): 1936-47, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22784709

RESUMEN

Src kinase is elevated in breast tumors that are ER/PR negative and do not overexpress HER2, but clinical trials with Src inhibitors have shown little activity. The present study evaluated preclinical efficacy of a novel peptidomimetic compound, KX-01 (KX2-391), that exhibits dual action as an Src and pretubulin inhibitor. KX-01 was evaluated as a single-agent and in combination with paclitaxel in MDA-MB-231, MDA-MB-157, and MDA-MB-468 human ER/PR/HER2-negative breast cancer cells. Treatments were evaluated by growth/apoptosis, isobologram analysis, migration/invasion assays, tumor xenograft volume, metastasis, and measurement of Src, focal adhesion kinase (FAK), microtubules, Ki67, and microvessel density. KX-01 inhibited cell growth in vitro and in combination with paclitaxel resulted in synergistic growth inhibition. KX-01 resulted in a dose-dependent inhibition of MDA-MB-231 and MDA-MB-157 tumor xenografts (1 and 5 mg/kg, twice daily). KX-01 inhibited activity of Src and downstream mediator FAK in tumors that was coincident with reduced proliferation and angiogenesis and increased apoptosis. KX01 also resulted in microtubule disruption in tumors. Combination of KX-01 with paclitaxel resulted in significant regression of MDA-MB-231 tumors and reduced metastasis to mouse lung and liver. KX-01 is a potently active Src/pretubulin inhibitor that inhibits breast tumor growth and metastasis. As ER/PR/HER2-negative patients are candidates for paclitaxel therapy, combination with KX-01 may potentiate antitumor efficacy in management of this aggressive breast cancer subtype.


Asunto(s)
Acetamidas/farmacología , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias Pulmonares/prevención & control , Paclitaxel/farmacología , Peptidomiméticos/farmacología , Piridinas/farmacología , Acetamidas/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Dasatinib , Sinergismo Farmacológico , Receptor alfa de Estrógeno/metabolismo , Femenino , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Morfolinas , Invasividad Neoplásica , Micrometástasis de Neoplasia/prevención & control , Neovascularización Patológica/prevención & control , Paclitaxel/uso terapéutico , Peptidomiméticos/uso terapéutico , Piridinas/uso terapéutico , Pirimidinas/farmacología , Receptor ErbB-2/metabolismo , Receptores de Progesterona/metabolismo , Tiazoles/farmacología , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/uso terapéutico , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Familia-src Quinasas/metabolismo
4.
Stem Cells Dev ; 19(12): 1875-84, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20380516

RESUMEN

Type 2 diabetes is associated with numerous long-term complications. This study aims to investigate whether impaired function of tissue-resident multipotent cells play role in pathogenesis of allied complications. Adipose-tissue-derived mesenchymal stem cells (ASCs) derived from nondiabetic (nASCs) and diabetic (dASCs) donors were compared with regard to glucose metabolism, cell replication, apoptosis, and differentiation potential. The data evidenced that elevation of glucose reduces proliferative capacity of both dASCs and nASCs, but impacts dASCs more significantly. Incorporation of insulin enhanced cell replication especially in nASCs. dASCs show higher levels of cellular senescence and apoptosis than nASCs. Unlike nASCs, apoptosis is induced via intrinsic pathway in dASCs. Data also evidenced that high glucose concentrations cause prominent disparities in nASCs and dASCs in expression of genes involved in insulin resistance such as adiponectin and resistin. Some changes in gene expression were irreversible in dASCs when treated with insulin. Additionally, high glucose concentrations reduce osteogenic and chondrogenic potential of ASCs, but enhance adipogenic potential. These results indicate that in addition to involvement in insulin resistance, impaired function of mesenchymal stem cells that reside in adipose tissue as one of the major sources of adult stem cells might be responsible for complications related to diabetes type 2.


Asunto(s)
Tejido Adiposo/citología , Diabetes Mellitus Tipo 2/fisiopatología , Glucosa/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Apoptosis , Caspasas/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Senescencia Celular , Condrogénesis , Expresión Génica , Humanos , Insulina/farmacología , Resistencia a la Insulina , Osteogénesis , Reacción en Cadena de la Polimerasa , Regeneración
5.
Artículo en Inglés | MEDLINE | ID: mdl-18569317

RESUMEN

An experiment was undertaken in gnotobiotic microcosms to determine the role of buffelgrass (Cenchrus ciliaris) and a phenanthrene-degrading bacterium (strain PM600) in the degradation of phenanthrene. The Gram-negative bacterium was identified as a Sphingomonas sp. by 16S rRNA gene sequence analysis and as S. paucimobilis by biochemical tests (API 20 NE strips). Its yellow pigment corresponded to nostoxanthin and its cellular fatty acids were typical of the genus Sphingomonas. Moreover, it was devoid of lipopolysaccharides. Strain PM600 was tested for growth on mineral medium supplemented with No. 2 diesel, hexadecane, mineral oil, pristane, phenanthrene, and pyrene as single carbon sources. It was capable of utilizing phenanthrene only. In the gnotobiotic microcosms silica sand was either or not supplemented with 150 mg of phenanthrene kg(-1) sand, inoculated with strain PM600, and planted to sterile young seedlings of buffelgrass. After 28 days, 67% of the reduction of the phenanthrene concentration was assigned to degradation by the bacterium and ca. 20% to abiotic factors. No statistically significant effect of the young buffelgrass was found. In the absence of phenanthrene, the bacterial population significantly increased in the rhizosphere of buffelgrass. However, in the presence of buffelgrass and phenanthrene, the bacterial population preferentially responded to phenanthrene. The growth of buffelgrass was severely curtailed by phenanthrene in the absence of the bacterium. However, strain PM600 effectively protected buffelgrass against the phytotoxicity of phenanthrene.


Asunto(s)
Cenchrus/metabolismo , Ecosistema , Fenantrenos/farmacocinética , Microbiología del Suelo , Contaminantes del Suelo/farmacocinética , Sphingomonas/metabolismo , Biodegradación Ambiental , Vida Libre de Gérmenes/fisiología
6.
Environ Sci Pollut Res Int ; 11(5): 340-6, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15506638

RESUMEN

GOAL, SCOPE AND BACKGROUND: The goal of this study was to understand the interaction between plants and microorganisms during petroleum-hydrocarbon bioremediation in Pacific Islands coastal soils. Total bacteria and hydrocarbon-degrading microorganisms population dyanamics were examined in the rhizospheres of tropical trees and shrubs, which were evaluated for their phytoremediation potential in a greenhouse experiment. The respective and combined effects of plant roots and diesel contaminant on the microbial populations were determined in relation to diesel fuel depletion. An increase in the grading populations size of the hydrocarbon-degrading populations of microbes, elicited by rhizodeposition, is generally regarded as conducive to an enhanced degradation of petroleum hydrocarbon pollutants in vegetated soil. METHODS: The soil was a coastal sandy loam (pH 7.8) which was artificially contaminated with 10 g of No. 2 diesel fuel/kg soil or left uncontaminated. The pots were irrigated with fertilizer and 1% NaCl. The enumerations were carried out in the contaminated and uncontaminated rhizospheres of three trees, kiawe (Prosopis pallida), milo (Thespesia populnea), and kou (Cordia subcordata) and three shrubs, beach naupaka (Scaevola sericea), false sandalwood (Myoporum sandwicense), and oleander (Nerium oleander). Unplanted control soils were included in the experiment. Total bacteria and phenanthrene-degrading bacteria were enumerated on plates. Diesel- and pristane-degrading microorganisms were enumerated by the most-probable-number technique in tissue-culture plates. RESULTS AND DISCUSSION: All four types of microorganisms responded to the rhizosphere of the 6 plants in uncontaminated soil and to the diesel contaminant in unplanted soil. In contaminated rhizospheres, no effect of the plant on the hydrocarbon-degrader numbers was visible. Total bacteria responded more to the plant roots than to the contaminant. The phenanthrene-degrading bacteria and pristane-degrading microorganisms were more influenced by the contaminant than by the plants. The diesel-degrading microorganisms were equally stimulated by the plants and the contaminant. The numbers of hydrocarbon degraders were similar in the contaminated rhizospheres of the three effective plants (kiawe, kou, and milo) and in those of the three ineffective shrubs. CONCLUSION: The results suggest the quality of the rhizodeposition is plant-dependent and governs the type of diesel-degrader populations that will be enhanced by a given plant. RECOMMENDATIONS AND OUTLOOK: In the proposed phytoremediation-benefit model plant roots maintain high levels of hydrocaron degraders in uncontaminated soil. When the root enters a contaminated zone of soil, those hydrocarbon degraders that prefer the contaminant would switch to the contaminant as a carbon source, effectively removing the hydrocarbons. If the root exudates and the contaminant are equally attractive to the hydrocarbon degraders, the contaminant degradaton would be less effective.


Asunto(s)
Hidrocarburos/aislamiento & purificación , Hidrocarburos/metabolismo , Petróleo , Microbiología del Suelo , Contaminantes del Suelo/aislamiento & purificación , Contaminantes del Suelo/metabolismo , Clima Tropical , Biodegradación Ambiental , Contaminación Ambiental/prevención & control , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología
7.
Int J Phytoremediation ; 6(1): 17-33, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15224773

RESUMEN

It is difficult to directly evaluate the efficacy of phytoremediation of petroleum hydrocarbon contaminants embedded in deep soil layers, especially if the contaminants are of relatively low concentration and are unevenly distributed. This report describes the greenhouse and laboratory experiments carried out to evaluate a field demonstration project. A trisector planter was designed to simulate field conditions, including soil profiles and field management of the trees selected. The third or bottom section of the planter was spiked with known quantities of 6 diesel-fuel components and the reduction of their concentrations was monitored after 200 days under the influence of the plant root systems. Results are statistically compared; among the three tree species used, milo (Thespesia populnea) and kou (Cordia subcordata) are more effective than false sandalwood (Myoporum sandwicense) in reducing the concentration of the spiked contaminant. Enumerations of populations of hydrocarbon-degrading microoorganisms in the bottom section suggest that biodegradation may be affected by the response of microorganisms to both the "close rhizosphere" (soil within 1 mm of the root) and the "expanded rhizosphere" (soil in the bottom section after root removal). Root exudates leached from the upper sections could be responsible for the expanded rhizosphere effect in the bottom section.


Asunto(s)
Agricultura/instrumentación , Raíces de Plantas/crecimiento & desarrollo , Suelo , Árboles/crecimiento & desarrollo , Agricultura/métodos , Ecosistema , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA