Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cancer Discov ; 11(6): 1562-1581, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33451982

RESUMEN

Mutations in ARID1A rank among the most common molecular aberrations in human cancer. However, oncogenic consequences of ARID1A mutation in human cells remain poorly defined due to lack of forward genetic models. Here, CRISPR/Cas9-mediated ARID1A knockout (KO) in primary TP53-/- human gastric organoids induced morphologic dysplasia, tumorigenicity, and mucinous differentiation. Genetic WNT/ß-catenin activation rescued mucinous differentiation, but not hyperproliferation, suggesting alternative pathways of ARID1A KO-mediated transformation. ARID1A mutation induced transcriptional regulatory modules characteristic of microsatellite instability and Epstein-Barr virus-associated subtype human gastric cancer, including FOXM1-associated mitotic genes and BIRC5/survivin. Convergently, high-throughput compound screening indicated selective vulnerability of ARID1A-deficient organoids to inhibition of BIRC5/survivin, functionally implicating this pathway as an essential mediator of ARID1A KO-dependent early-stage gastric tumorigenesis. Overall, we define distinct pathways downstream of oncogenic ARID1A mutation, with nonessential WNT-inhibited mucinous differentiation in parallel with essential transcriptional FOXM1/BIRC5-stimulated proliferation, illustrating the general utility of organoid-based forward genetic cancer analysis in human cells. SIGNIFICANCE: We establish the first human forward genetic modeling of a commonly mutated tumor suppressor gene, ARID1A. Our study integrates diverse modalities including CRISPR/Cas9 genome editing, organoid culture, systems biology, and small-molecule screening to derive novel insights into early transformation mechanisms of ARID1A-deficient gastric cancers.See related commentary by Zafra and Dow, p. 1327.This article is highlighted in the In This Issue feature, p. 1307.


Asunto(s)
Sistemas CRISPR-Cas , Transformación Celular Neoplásica , Proteínas de Unión al ADN/genética , Neoplasias Gástricas/genética , Factores de Transcripción/genética , Humanos , Modelos Biológicos , Mutación
2.
Cell ; 184(2): 334-351.e20, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33434495

RESUMEN

Despite considerable efforts, the mechanisms linking genomic alterations to the transcriptional identity of cancer cells remain elusive. Integrative genomic analysis, using a network-based approach, identified 407 master regulator (MR) proteins responsible for canalizing the genetics of individual samples from 20 cohorts in The Cancer Genome Atlas (TCGA) into 112 transcriptionally distinct tumor subtypes. MR proteins could be further organized into 24 pan-cancer, master regulator block modules (MRBs), each regulating key cancer hallmarks and predictive of patient outcome in multiple cohorts. Of all somatic alterations detected in each individual sample, >50% were predicted to induce aberrant MR activity, yielding insight into mechanisms linking tumor genetics and transcriptional identity and establishing non-oncogene dependencies. Genetic and pharmacological validation assays confirmed the predicted effect of upstream mutations and MR activity on downstream cellular identity and phenotype. Thus, co-analysis of mutational and gene expression profiles identified elusive subtypes and provided testable hypothesis for mechanisms mediating the effect of genetic alterations.


Asunto(s)
Neoplasias/genética , Transcripción Genética , Adenocarcinoma/genética , Animales , Línea Celular Tumoral , Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Células HEK293 , Humanos , Ratones Desnudos , Mutación/genética , Reproducibilidad de los Resultados
3.
Nat Biotechnol ; 39(2): 215-224, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32929263

RESUMEN

Tumor-specific elucidation of physical and functional oncoprotein interactions could improve tumorigenic mechanism characterization and therapeutic response prediction. Current interaction models and pathways, however, lack context specificity and are not oncoprotein specific. We introduce SigMaps as context-specific networks, comprising modulators, effectors and cognate binding-partners of a specific oncoprotein. SigMaps are reconstructed de novo by integrating diverse evidence sources-including protein structure, gene expression and mutational profiles-via the OncoSig machine learning framework. We first generated a KRAS-specific SigMap for lung adenocarcinoma, which recapitulated published KRAS biology, identified novel synthetic lethal proteins that were experimentally validated in three-dimensional spheroid models and established uncharacterized crosstalk with RAB/RHO. To show that OncoSig is generalizable, we first inferred SigMaps for the ten most mutated human oncoproteins and then for the full repertoire of 715 proteins in the COSMIC Cancer Gene Census. Taken together, these SigMaps show that the cell's regulatory and signaling architecture is highly tissue specific.


Asunto(s)
Redes Reguladoras de Genes , Neoplasias/genética , Proteínas Oncogénicas/metabolismo , Algoritmos , Animales , Humanos , Ratones , Mutación/genética , Organoides/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , ARN Interferente Pequeño/metabolismo , Curva ROC , Transducción de Señal
4.
Biophys J ; 105(11): 2507-16, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24314081

RESUMEN

Synaptotagmin triggers rapid exocytosis of neurotransmitters from synaptic vesicles in response to Calcium (Ca(2+)) ions. Here, we use a novel Nanodisc-based system, designed to be a soluble mimetic of the clamped synaptic vesicle-bilayer junction, combined with fluorescence resonance energy transfer (FRET) spectroscopy to monitor the structural relationships among SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor), Synaptotagmin C2 domains, and the lipid bilayer in real time during the Ca(2+)-activation process. We report that Synaptotagmin remains rigidly fixed on the partially assembled SNARE complex with no detectable internal rearrangement of its C2 domains, even as it rapidly inserts into the bilayer. We hypothesize that this straightforward, one-step physical mechanism could explain how this Ca(2+)- sensor rapidly activates neurotransmitter release from the clamped state.


Asunto(s)
Calcio/metabolismo , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Proteína 25 Asociada a Sinaptosomas/química , Sinaptotagmina I/química , Secuencia de Aminoácidos , Animales , Transferencia Resonante de Energía de Fluorescencia , Membrana Dobles de Lípidos/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Proteína 25 Asociada a Sinaptosomas/genética , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA