Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Brain Res Bull ; 212: 110958, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38677559

RESUMEN

Education sculpts specialized neural circuits for skills like reading that are critical to success in modern society but were not anticipated by the selective pressures of evolution. Does the emergence of brain regions that selectively process novel visual stimuli like words occur at the expense of cortical representations of other stimuli like faces and objects? "Neuronal Recycling" predicts that learning to read should enhance the response to words in ventral occipitotemporal cortex (VOTC) and decrease the response to other visual categories such as faces and objects. To test this hypothesis, and more broadly to understand the changes that are induced by the early stages of literacy instruction, we conducted a randomized controlled trial with pre-school children (five years of age). Children were randomly assigned to intervention programs focused on either reading skills or oral language skills and magnetoencephalography (MEG) data collected before and after the intervention was used to measure visual responses to images of text, faces, and objects. We found that being taught reading versus oral language skills induced different patterns of change in category-selective regions of visual cortex, but that there was not a clear tradeoff between the response to words versus other categories. Within a predefined region of VOTC corresponding to the visual word form area (VWFA) we found that the relative amplitude of responses to text, faces, and objects changed, but increases in the response to words were not linked to decreases in the response to faces or objects. How these changes play out over a longer timescale is still unknown but, based on these data, we can surmise that high-level visual cortex undergoes rapid changes as children enter school and begin establishing new skills like literacy.


Asunto(s)
Magnetoencefalografía , Lectura , Corteza Visual , Humanos , Corteza Visual/fisiología , Masculino , Femenino , Magnetoencefalografía/métodos , Preescolar , Reconocimiento Visual de Modelos/fisiología , Estimulación Luminosa/métodos , Aprendizaje/fisiología , Mapeo Encefálico
2.
Sci Rep ; 13(1): 21134, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036762

RESUMEN

Previous research has shown that neural activity in the primary visual cortex (V1) and V1 surface area may be linked with subjective experience of size illusions. Here, we behaviorally measured the hallway illusion with experimental manipulations as a proxy of V1's influence on size perception. We first tested whether the hallway illusion can persist without further recurrent processing by using backward masking. Next, we examined relations among the hallway illusion magnitude and other perceptual measures that have been suggested to be correlated with V1 surface area. In Experiment 1, the magnitude of the hallway illusion was not affected by the stimulus duration and visual masking when the hallway context was previewed (i.e., complex depth information is already processed). It suggests that V1 activity could support the size illusion to some extent even when recurrent processing between V1 and higher areas is disturbed. In Experiment 2, the hallway illusion magnitude was correlated with the Vernier acuity threshold, but not with physical size discriminability. Our results provide converging evidence with the previous findings in that neural activity in V1 may contribute to size illusions and that V1 surface area is not the sole factor that mediates size perception and visual precision.


Asunto(s)
Ilusiones , Corteza Visual , Humanos , Corteza Visual Primaria , Estimulación Luminosa/métodos , Percepción del Tamaño , Percepción Visual
3.
Sci Rep ; 13(1): 14274, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653061

RESUMEN

The present study investigated the effect of facial masks on people's ability to perceive emotions in crowds. We presented faces with the bottom halves occluded by masks or full faces without occlusion. In two sequentially presented crowds, we varied the number of faces, emotional valence, and intensity of facial expressions, examining the impact of masks on the perception of crowd emotion. Participants reported which of the two crowds they would avoid based on the crowds' average emotions. The participants' ability to judge the average emotion of a crowd, especially a crowd expressing happiness, was impaired when the crowd wore masks. For faces covered by masks, crowd emotion judgments were more negatively biased than those without masks. However, participants could still distinguish the emotional intensities of a crowd wearing masks above chance. Additionally, participants responded more quickly to a crowd with more people without compromising accuracy, despite the perceptual challenges imposed by facial masks. Our results suggest that under ambiguous social situations in which individuals' emotions are partially hidden by masks, a large group may provide stronger social cues than a small group, thereby promoting communication and regulating social behaviors.


Asunto(s)
Emociones , Máscaras , Humanos , Felicidad , Comunicación , Percepción
4.
Cortex ; 166: 80-90, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37343313

RESUMEN

Three-dimensional (3D) depth information is important to estimate object sizes. The visual system extracts 3D depth information using both binocular cues and monocular cues. However, how these different depth signals interact with each other to compute the object size in 3D space is unclear. Here, we aim to study the relative contribution of monocular and binocular depth information to size perception in a modified Ponzo context by manipulating their relations in a virtual reality environment. Specifically, we compared the amount of the size illusion in the following two conditions, in which monocular cues and binocular disparity in the Ponzo context can indicate the same depth sign (congruent) or opposite depth sign (incongruent). Our results show an increase in the amount of the Ponzo illusion in the congruent condition. In contrast, in the incongruent condition, we find that the two cues indicating the opposite depth signs do not cancel out the Ponzo illusion, suggesting that the effects of the two cues are not equal. Rather, binocular disparity information seems to be suppressed and the size judgment is mainly dependent on the monocular depth information when the two cues are in conflict. Our results suggest that monocular and binocular depth signals are fused for size perception only when they both indicate the same depth sign and top-down 3D depth information based on monocular cues contributes more to size perception than binocular disparity when they are in conflict in virtual reality.


Asunto(s)
Ilusiones , Realidad Virtual , Humanos , Percepción de Profundidad , Visión Binocular , Señales (Psicología) , Percepción del Tamaño
5.
Hum Brain Mapp ; 42(17): 5785-5797, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34487405

RESUMEN

The latency of neural responses in the visual cortex changes systematically across the lifespan. Here, we test the hypothesis that development of visual white matter pathways mediates maturational changes in the latency of visual signals. Thirty-eight children participated in a cross-sectional study including diffusion magnetic resonance imaging (MRI) and magnetoencephalography (MEG) sessions. During the MEG acquisition, participants performed a lexical decision and a fixation task on words presented at varying levels of contrast and noise. For all stimuli and tasks, early evoked fields were observed around 100 ms after stimulus onset (M100), with slower and lower amplitude responses for low as compared to high contrast stimuli. The optic radiations and optic tracts were identified in each individual's brain based on diffusion MRI tractography. The diffusion properties of the optic radiations predicted M100 responses, especially for high contrast stimuli. Higher optic radiation fractional anisotropy (FA) values were associated with faster and larger M100 responses. Over this developmental window, the M100 responses to high contrast stimuli became faster with age and the optic radiation FA mediated this effect. These findings suggest that the maturation of the optic radiations over childhood accounts for individual variations observed in the developmental trajectory of visual cortex responses.


Asunto(s)
Imagen de Difusión Tensora , Potenciales Evocados/fisiología , Magnetoencefalografía , Corteza Visual/crecimiento & desarrollo , Vías Visuales/crecimiento & desarrollo , Sustancia Blanca/crecimiento & desarrollo , Niño , Estudios Transversales , Femenino , Humanos , Masculino , Corteza Visual/anatomía & histología , Corteza Visual/diagnóstico por imagen , Vías Visuales/anatomía & histología , Vías Visuales/diagnóstico por imagen , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen
6.
Brain Lang ; 214: 104906, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33516066

RESUMEN

Skilled reading requires years of practice associating visual symbols with speech sounds. Over the course of the learning process, this association becomes effortless and automatic. Here we test whether automatic activation of spoken-language circuits in response to visual words is a hallmark of skilled reading. Magnetoencephalography was used to measure word-selective responses under multiple cognitive tasks (N = 42, 7-12 years of age). Even when attention was drawn away from the words by performing an attention-demanding fixation task, strong word-selective responses were found in a language region (i.e., superior temporal gyrus) starting at ~300 ms after stimulus onset. Critically, this automatic word-selective response was indicative of reading skill: the magnitude of word-selective responses correlated with individual reading skill. Our results suggest that automatic recruitment of spoken-language circuits is a hallmark of skilled reading; with practice, reading becomes effortless as the brain learns to automatically translate letters into sounds and meaning.


Asunto(s)
Fonética , Lectura , Encéfalo , Humanos , Lenguaje , Magnetoencefalografía
7.
Sci Rep ; 10(1): 904, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31969579

RESUMEN

While online experiments have shown tremendous potential to study larger and more diverse participant samples than is possible in the lab, the uncontrolled online environment has prohibited many types of psychophysical studies due to difficulties controlling the viewing distance and stimulus size. We introduce the Virtual Chinrest, a method that measures a participant's viewing distance in the web browser by detecting a participant's blind spot location. This makes it possible to automatically adjust stimulus configurations based on an individual's viewing distance. We validated the Virtual Chinrest in two laboratory studies in which we varied the viewing distance and display size, showing that our method estimates participants' viewing distance with an average error of 3.25 cm. We additionally show that by using the Virtual Chinrest we can reliably replicate measures of visual crowding, which depends on a precise calculation of visual angle, in an uncontrolled online environment. An online experiment with 1153 participants further replicated the findings of prior laboratory work, demonstrating how visual crowding increases with eccentricity and extending this finding by showing that young children, older adults and people with dyslexia all exhibit increased visual crowding, compared to adults without dyslexia. Our method provides a promising pathway to web-based psychophysical research requiring controlled stimulus geometry.


Asunto(s)
Percepción de Distancia/fisiología , Sistemas en Línea , Psicofísica/métodos , Interfaz Usuario-Computador , Percepción Visual/fisiología , Navegador Web , Aglomeración , Humanos , Disco Óptico
8.
J Vis ; 19(4): 27, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31013523

RESUMEN

An object moving through three-dimensional (3D) space typically yields different patterns of velocities in each eye. For an interocular velocity difference cue to be used, some instances of real 3D motion in the environment (e.g., when a moving object is partially occluded) would require an interocular velocity difference computation that operates on motion signals that are not only monocular (or eye specific) but also depend on each eye's two-dimensional (2D) direction being estimated over regions larger than the size of V1 receptive fields (i.e., global pattern motion). We investigated this possibility using 3D motion aftereffects (MAEs) with stimuli comprising many small, drifting Gabor elements. Conventional frontoparallel (2D) MAEs were local-highly sensitive to the test elements being in the same locations as the adaptor (Experiment 1). In contrast, 3D MAEs were robust to the test elements being in different retinal locations than the adaptor, indicating that 3D motion processing involves relatively global spatial pooling of motion signals (Experiment 2). The 3D MAEs were strong even when the local elements were in unmatched locations across the two eyes during adaptation, as well as when the adapting stimulus elements were randomly oriented, and specified global motion via the intersection of constraints (Experiment 3). These results bolster the notion of eye-specific computation of 2D pattern motion (involving global pooling of local, eye-specific motion signals) for the purpose of computing 3D motion, and highlight the idea that classically "late" computations such as pattern motion can be done in a manner that retains information about the eye of origin.


Asunto(s)
Imagenología Tridimensional/métodos , Percepción de Movimiento/fisiología , Reconocimiento Visual de Modelos/fisiología , Adaptación Ocular/fisiología , Humanos , Fenómenos Fisiológicos Oculares , Visión Binocular/fisiología
9.
Dev Cogn Neurosci ; 36: 100593, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30318344

RESUMEN

Word-selective neural responses in human ventral occipito-temporal cortex (VOTC) emerge as children learn to read, creating a visual word form area (VWFA) in the literate brain. It has been suggested that the VWFA arises through competition between pre-existing selectivity for other stimulus categories, changing the topography of VOTC to support rapid word recognition. Here, we hypothesized that competition between words and objects would be resolved as children acquire reading skill. Using functional magnetic resonance imaging (fMRI), we examined the relationship between responses to words and objects in VOTC in two ways. First, we defined the VWFA using a words > objects contrast and found that only skilled readers had a region that responded more to words than objects. Second, we defined the VWFA using a words > faces contrast and examined selectivity for words over objects in this region. We found that word selectivity strongly correlated with reading skill, suggesting reading skill-dependent tuning for words. Furthermore, we found that low word selectivity in struggling readers was not due to a lack of response to words, but to a high response to objects. Our results suggest that the fine-tuning of word-selective responses in VOTC is a critical component of skilled reading.


Asunto(s)
Encéfalo/fisiología , Dislexia/fisiopatología , Alfabetización/psicología , Lectura , Corteza Visual/fisiología , Niño , Femenino , Humanos , Aprendizaje , Masculino
10.
Cortex ; 103: 291-301, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29679920

RESUMEN

Reading is a complex process that involves low-level visual processing, phonological processing, and higher-level semantic processing. Given that skilled reading requires integrating information among these different systems, it is likely that reading difficulty-known as dyslexia-can emerge from impairments at any stage of the reading circuitry. To understand contributing factors to reading difficulties within individuals, it is necessary to diagnose the function of each component of the reading circuitry. Here, we investigated whether adults with dyslexia who have impairments in visual processing respond to a visual manipulation specifically targeting their impairment. We collected psychophysical measures of visual crowding and tested how each individual's reading performance was affected by increased text-spacing, a manipulation designed to alleviate severe crowding. Critically, we identified a sub-group of individuals with dyslexia showing elevated crowding and found that these individuals read faster when text was rendered with increased letter-, word- and line-spacing. Our findings point to a subtype of dyslexia involving elevated crowding and demonstrate that individuals benefit from interventions personalized to their specific impairments.


Asunto(s)
Atención/fisiología , Comprensión/fisiología , Dislexia/rehabilitación , Reconocimiento Visual de Modelos/fisiología , Lectura , Adulto , Dislexia/fisiopatología , Femenino , Humanos , Masculino , Adulto Joven
11.
J Vis ; 17(14): 1, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29196759

RESUMEN

The response of V1 neurons to a stimulus placed inside the classical receptive field can be modulated by stimuli presented outside the classical receptive field. However, the specific nature of these contextual modulations is unknown. Both enhancement and suppression have been observed as well as variability across measurement methodologies. To assess whether the contextual effect is facilitative or suppressive, we measured neural responses to an oriented Gabor stimulus ("target") in three conditions: in isolation, with two Gabor flankers that were the same orientation as the target, and with two flankers that were orthogonal to the target orientation. We show that the target-related fMRI response, event-related potential amplitude, and the amount of contrast adaptation are all lower when the flankers were the same orientation compared to both the isolated and orthogonal conditions. There was no evidence of response enhancement. These results all point to an orientation-tuned suppressive effect of contextual stimuli measured in the periphery that is well explained by models incorporating divisive or subtractive inhibition.


Asunto(s)
Potenciales Evocados Visuales/fisiología , Imagen por Resonancia Magnética/métodos , Orientación Espacial/fisiología , Orientación/fisiología , Psicofísica/métodos , Corteza Visual/diagnóstico por imagen , Humanos , Estimulación Luminosa/métodos , Corteza Visual/fisiología
12.
Nanoscale ; 9(23): 7960-7969, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28574064

RESUMEN

In this work, we describe the efficiency enhancement in dye-sensitized solar cells (DSSCs) by using TiO2/silver nanoplate plasmonic nanocomposite photoanodes. The nanocomposite photoanodes with tunable plasmonic properties assembled from shape/size-selected silver (Ag) nanoplates were applied to enhance the light absorption for high-performance DSSCs. It was found that the localized surface plasmon resonance can be tuned over a range from 500 to 1000 nm, which is strongly dependent on the shape and size of Ag nanoplates and the refractive index of the surrounding dielectric. The effects of the size and shape of Ag nanoplates on the surface plasmonic resonance and the efficiency of DSSCs were evaluated experimentally. Furthermore, a three-dimensional finite element method was employed to investigate the localized surface plasmon resonance (LSPR) for the shape and size effect of Ag nanoplates.

13.
Sci Rep ; 7(1): 4185, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28646168

RESUMEN

It is well established that visual sensitivity to motion is correlated with reading skills. Yet, the causal relationship between motion sensitivity and reading skills has been debated for more than thirty years. One hypothesis posits that dyslexia is caused by deficits in the motion processing pathway. An alternative hypothesis explains the motion processing deficit observed in dyslexia as the consequence of a lack, or poor quality, of reading experience. Here we used an intensive reading intervention program to test the causal relationship between learning to read and motion processing in children. Our data show that, while the reading intervention enhanced reading abilities, learning to read did not affect motion sensitivity. Motion sensitivity remained stable over the course of the intervention. Furthermore, the motion sensitivity deficit did not negatively impact the learning process. Children with poor motion sensitivity showed the same improvement in reading skills as children with typical motion sensitivity. Our findings call into question the view that motion processing deficits are due to poor reading experience. We propose that the correlation between the two measures arises from other common mechanisms, or that motion processing deficits are among a collection of correlated risk factors for reading difficulties.


Asunto(s)
Dislexia/etiología , Percepción de Movimiento , Niño , Femenino , Humanos , Masculino , Lectura
14.
Nanotechnology ; 28(20): 205205, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28402291

RESUMEN

In this work, bimodal Cu nano-inks composed of two different sizes of Cu nanoparticles (NPs) (40 and 100 nm in diameter) were successfully sintered with a multi-pulse flashlight sintering technique. Bimodal Cu nano-inks were fabricated and printed with various mixing ratios and subsequently sintered by a flash light sintering method. The effects of the flashlight sintering conditions, including irradiation energy and pulse number, were investigated to optimize the sintering conditions. A detailed mechanism of the sintering of bimodal Cu nano-ink was also studied via real-time resistance measurement during the sintering process. The sintered Cu nano-ink films were characterized using x-ray photoelectron spectroscopy and scanning electron microscopy. From these results, it was found that the optimal ratio of 40-100 nm NPs was found to be 25:75 wt%, and the optimal multi-pulse flash light sintering condition (irradiation energy: 6 J cm-2, and pulse duration: 1 ms, off-time: 4 ms, and pulse number: 5) was found. The optimally sintered Cu nano-ink film exhibited the lowest resistivity of 5.68 µΩ cm and 5B adhesion level.

15.
J Neurosci ; 36(42): 10791-10802, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27798134

RESUMEN

Although the visual system uses both velocity- and disparity-based binocular information for computing 3D motion, it is unknown whether (and how) these two signals interact. We found that these two binocular signals are processed distinctly at the levels of both cortical activity in human MT and perception. In human MT, adaptation to both velocity-based and disparity-based 3D motions demonstrated direction-selective neuroimaging responses. However, when adaptation to one cue was probed using the other cue, there was no evidence of interaction between them (i.e., there was no "cross-cue" adaptation). Analogous psychophysical measurements yielded correspondingly weak cross-cue motion aftereffects (MAEs) in the face of very strong within-cue adaptation. In a direct test of perceptual independence, adapting to opposite 3D directions generated by different binocular cues resulted in simultaneous, superimposed, opposite-direction MAEs. These findings suggest that velocity- and disparity-based 3D motion signals may both flow through area MT but constitute distinct signals and pathways. SIGNIFICANCE STATEMENT: Recent human neuroimaging and monkey electrophysiology have revealed 3D motion selectivity in area MT, which is driven by both velocity-based and disparity-based 3D motion signals. However, to elucidate the neural mechanisms by which the brain extracts 3D motion given these binocular signals, it is essential to understand how-or indeed if-these two binocular cues interact. We show that velocity-based and disparity-based signals are mostly separate at the levels of both fMRI responses in area MT and perception. Our findings suggest that the two binocular cues for 3D motion might be processed by separate specialized mechanisms.


Asunto(s)
Percepción de Movimiento/fisiología , Percepción Visual/fisiología , Adulto , Señales (Psicología) , Femenino , Efecto Tardío Figurativo , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen , Estimulación Luminosa , Disparidad Visual/fisiología , Visión Binocular/fisiología , Corteza Visual/fisiología
16.
Proc Natl Acad Sci U S A ; 113(7): 1925-30, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26831067

RESUMEN

It is well established that ongoing cognitive functions affect the trajectories of limb movements mediated by corticospinal circuits, suggesting an interaction between cognition and motor action. Although there are also many demonstrations that decision formation is reflected in the ongoing neural activity in oculomotor brain circuits, it is not known whether the decision-related activity in those oculomotor structures interacts with eye movements that are decision irrelevant. Here we tested for an interaction between decisions and instructed saccades unrelated to the perceptual decision. Observers performed a direction-discrimination decision-making task, but made decision-irrelevant saccades before registering their motion decision with a button press. Probing the oculomotor circuits with these decision-irrelevant saccades during decision making revealed that saccade reaction times and peak velocities were influenced in proportion to motion strength, and depended on the directional congruence between decisions about visual motion and decision-irrelevant saccades. These interactions disappeared when observers passively viewed the motion stimulus but still made the same instructed saccades, and when manual reaction times were measured instead of saccade reaction times, confirming that these interactions result from decision formation as opposed to visual stimulation, and are specific to the oculomotor system. Our results demonstrate that oculomotor function can be affected by decision formation, even when decisions are communicated without eye movements, and that this interaction has a directionally specific component. These results not only imply a continuous and interactive mixture of motor and decision signals in oculomotor structures, but also suggest nonmotor recruitment of oculomotor machinery in decision making.


Asunto(s)
Toma de Decisiones , Movimientos Oculares , Humanos
17.
Nat Commun ; 6: 8885, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26648521

RESUMEN

Psychiatric disorders are characterized by major fluctuations in psychological function over the course of weeks and months, but the dynamic characteristics of brain function over this timescale in healthy individuals are unknown. Here, as a proof of concept to address this question, we present the MyConnectome project. An intensive phenome-wide assessment of a single human was performed over a period of 18 months, including functional and structural brain connectivity using magnetic resonance imaging, psychological function and physical health, gene expression and metabolomics. A reproducible analysis workflow is provided, along with open access to the data and an online browser for results. We demonstrate dynamic changes in brain connectivity over the timescales of days to months, and relations between brain connectivity, gene expression and metabolites. This resource can serve as a testbed to study the joint dynamics of human brain and metabolic function over time, an approach that is critical for the development of precision medicine strategies for brain disorders.


Asunto(s)
Encéfalo/fisiología , Vías Nerviosas , Encéfalo/diagnóstico por imagen , Estudios de Seguimiento , Expresión Génica , Redes Reguladoras de Genes , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Fenotipo , Radiografía
18.
ACS Appl Mater Interfaces ; 7(45): 25413-23, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26505908

RESUMEN

In this work, multiwalled carbon nanotubes (MWNTs) were employed to improve the conductivity and fatigue resistance of flash light sintered copper nanoparticle (NP) ink films. The effect of CNT weight fraction on the flash light sintering and the fatigue characteristics of Cu NP/CNT composite films were investigated. The effect of carbon nanotube length was also studied with regard to enhancing the conductivity and fatigue resistance of flash light sintered Cu NP/CNT composite films. The flash light irradiation energy was optimized to obtain high conductivity Cu NP/CNT composite films. Cu NP/CNT composite films fabricated via optimized flash light irradiation had the lowest resistivity (7.86 µΩ·cm), which was only 4.6 times higher than that of bulk Cu films (1.68 µΩ·cm). It was also demonstrated that Cu NP/CNT composite films had better durability and environmental stability than those of Cu NPs only.

19.
Neuron ; 87(3): 657-70, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26212711

RESUMEN

Resting state functional MRI (fMRI) has enabled description of group-level functional brain organization at multiple spatial scales. However, cross-subject averaging may obscure patterns of brain organization specific to each individual. Here, we characterized the brain organization of a single individual repeatedly measured over more than a year. We report a reproducible and internally valid subject-specific areal-level parcellation that corresponds with subject-specific task activations. Highly convergent correlation network estimates can be derived from this parcellation if sufficient data are collected-considerably more than typically acquired. Notably, within-subject correlation variability across sessions exhibited a heterogeneous distribution across the cortex concentrated in visual and somato-motor regions, distinct from the pattern of intersubject variability. Further, although the individual's systems-level organization is broadly similar to the group, it demonstrates distinct topological features. These results provide a foundation for studies of individual differences in cortical organization and function, especially for special or rare individuals. VIDEO ABSTRACT.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Adulto , Mapeo Encefálico/normas , Humanos , Imagen por Resonancia Magnética/normas , Masculino , Persona de Mediana Edad , Desempeño Psicomotor/fisiología
20.
ACS Appl Mater Interfaces ; 7(10): 5674-84, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25714508

RESUMEN

In this work, copper nanowires (NWs) and Cu nanoparticles (NPs) were employed to increase the reliability of a printed electrode pattern under mechanical bending fatigue. The fabricated Cu NW/NP inks with different weight fractions of Cu NWs were printed on a polyimide substrate and flash light-sintered within a few milliseconds at room temperature under ambient conditions. Then, 1000 cycles of outer and inner bending fatigue tests were performed using a lab-made fatigue tester. The flash light-sintered Cu NW/NP ink film with 5 wt % Cu NWs prepared under the flash light-sintering conditions (12.5 J·cm­2 irradiation energy, 10 ms pulse duration, and one pulse) showed a lower resistivity (22.77 µΩ·cm) than those of the only Cu NPs and Cu NWs ink (94.01 µΩ·cm and 104.15 µΩ·cm, respectively). In addition, the resistance change (ΔR·R0(­1)) of the 5 wt % Cu NWs Cu NW/NP film was greatly enhanced to 4.19 compared to the 92.75 of the Cu NPs film obtained under mechanical fatigue conditions over 1000 cycles and an outer bending radius of 7 mm. These results were obtained by the densification and enhanced mechanical flexibility of flash light-sintered Cu NW/NP network, which resulted in prevention of crack initiation and propagation. To characterize the Cu NW/NP ink film, X-ray diffraction and scanning electron microscopy were used.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA