Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Conserv Physiol ; 1(1): cot002, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-27293586

RESUMEN

Incidental capture, or bycatch, in fisheries represents a substantial threat to the sustainability of elasmobranch populations worldwide. Consequently, researchers are increasingly investigating elasmobranch bycatch reduction methods, including some focused on these species' sensory capabilities, particularly their electrosensory systems. To guide this research, we review current knowledge of elasmobranch sensory biology and feeding ecology with respect to fishing gear interactions and include examples of bycatch reduction methods used for elasmobranchs as well as other taxonomic groups. We discuss potential elasmobranch bycatch reduction strategies for various fishing gear types based on the morphological, physiological, and behavioural characteristics of species within this diverse group. In select examples, we indicate how an understanding of the physiology and sensory biology of vulnerable, bycatch-prone, non-target elasmobranch species can help in the identification of promising options for bycatch reduction. We encourage collaboration among researchers studying bycatch reduction across taxa to provide better understanding of the broad effects of bycatch reduction methods.

2.
J Exp Biol ; 212(19): 3037-43, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19749095

RESUMEN

Short range hydrodynamic and electrosensory signals are important during final stages of prey capture in elasmobranchs (sharks, skates and rays), and may be particularly useful for dorso-ventrally flattened batoids with mouths hidden from their eyes. In stingrays, both the lateral line canal and electrosensory systems are highly modified and complex with significant differences on ventral surfaces that relate to feeding ecology. This study tests functional hypotheses based on quantified differences in sensory system morphology of three stingray species, Urobatis halleri, Myliobatis californica and Pteroplatytrygon violacea. Part I investigates the mechanosensory lateral line canal system whereas part II focuses on the electrosensory system. Stingray lateral line canals include both pored and non-pored sections and differ in branching complexity and distribution. A greater proportion of pored canals and high pore numbers were predicted to correspond to increased response to water flow. Behavioral experiments were performed to compare responses of stingrays to weak water jets mimicking signals produced by potential prey at velocities of 10-20 cm s(-1). Bat rays, M. californica, have the most complex and broadly distributed pored canal network and demonstrated both the highest response rate and greater response intensity to water jet signals. Results suggest that U. halleri and P. violacea may rely on additional sensory input, including tactile and visual cues, respectively, to initiate stronger feeding responses. These results suggest that stingray lateral line canal morphology can indicate detection capabilities through responsiveness to weak water jets.


Asunto(s)
Sistema de la Línea Lateral/fisiología , Percepción/fisiología , Rajidae/fisiología , Animales , Conducta Alimentaria , Femenino , Sistema de la Línea Lateral/anatomía & histología , Masculino , Mecanotransducción Celular , Rajidae/anatomía & histología , Especificidad de la Especie , Movimientos del Agua
3.
J Exp Biol ; 212(19): 3044-50, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19749096

RESUMEN

Elasmobranch fishes (sharks, skates and rays) possess highly sensitive electrosensory systems, which enable them to detect weak electric fields such as those produced by potential prey organisms. Different species have unique electrosensory pore numbers, densities and distributions. Functional differences in detection capabilities resulting from these structural differences are largely unknown. Stingrays and other batoid fishes have eyes positioned on the opposite side of the body from the mouth. Furthermore, they often feed on buried prey, which can be located non-visually using the electrosensory system. In the present study we test functional predictions based on structural differences in three stingray species (Urobatis halleri, Pteroplatytrygon violacea and Myliobatis californica) with differing electrosensory system morphology. We compare detection capabilities based upon behavioral responses to dipole electric signals (5.3-9.6 microA). Species with greater ventral pore numbers and densities were predicted to demonstrate enhanced electrosensory capabilities. Electric field intensities at orientation were similar among these species, although they differed in response type and orientation pathway. Minimum voltage gradients eliciting feeding responses were well below 1 nVcm(-1) for all species regardless of pore number and density.


Asunto(s)
Fenómenos Electrofisiológicos/fisiología , Percepción/fisiología , Rajidae/fisiología , Animales , Señales (Psicología) , Conducta Alimentaria , Femenino , Masculino , Mecanotransducción Celular , Rajidae/anatomía & histología , Especificidad de la Especie , Movimientos del Agua
4.
J Morphol ; 269(11): 1325-39, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18655157

RESUMEN

Elasmobranchs (sharks, skates, and rays) possess a variety of sensory systems including the mechanosensory lateral line and electrosensory systems, which are particularly complex with high levels of interspecific variation in batoids (skates and rays). Rays have dorsoventrally compressed, laterally expanded bodies that prevent them from seeing their mouths and more often than not, their prey. This study uses quantitative image analysis techniques to identify, quantify, and compare structural differences that may have functional consequences in the detection capabilities of three Eastern Pacific stingray species. The benthic round stingray, Urobatis halleri, pelagic stingray, Pteroplatytrygon (Dasyatis) violacea, and benthopelagic bat ray, Myliobatis californica, show significant differences in sensory morphology. Ventral lateral line canals correlate with feeding ecology and differ primarily in the proportion of pored and nonpored canals and the degree of branching complexity. Urobatis halleri shows a high proportion of nonpored canals, while P. violacea has an intermediate proportion of pored and nonpored canals with almost no secondary branching of pored canals. In contrast, M. californica has extensive and highly branched pored ventral lateral line canals that extended laterally toward the wing tips on the anterior edge of the pectoral fins. Electrosensory morphology correlates with feeding habitat and prey mobility; benthic feeders U. halleri and M. californica, have greater electrosensory pore numbers and densities than P. violacea. The percentage of the wing surface covered by these sensory systems appears to be inversely related to swimming style. These methods can be applied to a broader range of species to enable further discussion of the relationship of phylogeny, ecology, and morphology, while the results provide testable predictions of detection capabilities.


Asunto(s)
Órganos de los Sentidos/anatomía & histología , Rajidae/anatomía & histología , Animales , Ecosistema , Electricidad , Conducta Alimentaria/fisiología , Femenino , Masculino , Mecanotransducción Celular/fisiología , Actividad Motora/fisiología , Filogenia , Conducta Predatoria/fisiología , Órganos de los Sentidos/fisiología , Rajidae/clasificación , Rajidae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA