Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Ultrason Sonochem ; 64: 105010, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32312550

RESUMEN

In this work, NaX zeolite was synthesized and the effect of ultrasound irradiation on reaction kinetics, morphological and structural properties was investigated. Ultrasound was applied, by using a plate transducer (91.8 kHz), for the first time during the crystallization of zeolite NaX, at high temperature, varying the irradiation moment and its duration. Furthermore, ultrasound was applied after the crystallization by a horn-type transducer (20-24 kHz) at low temperature. The effects of irradiated volume (100-300 mL), sonication time (2-10 min) and ultrasound power (10-200 W) were studied with a power intensity up to 100 W/cm2. It was found that the application of ultrasound during the first hour of crystallization resulted in 20% reduction of reaction time compared to a standard crystallization. Ultrasound can also reduce the agglomeration degree of the final powder by combining high power and long sonication time. After 5 min sonication time at 0.3 W/mL, the tapped density of the powder was increased by 10%, from 0.37 to 0.41 g/mL. Finally, by scanning electron microscopy (SEM) it was demonstrated that ultrasound can disrupt the agglomerates without affecting the morphology of individual crystals.

2.
Front Chem ; 8: 34, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32064251

RESUMEN

The search for sustainable alternatives for use in chemical synthesis and catalysis has found an ally in non-conventional energy sources and widely available green solvents. The use of glycerol, an abundant natural solvent, as an excellent "sacrificial" hydrogen source for the copper-catalyzed microwave (MW)-promoted transfer hydrogenation of nitrobenzene to aniline has been investigated in this work. Copper nanoparticles (CuNPs) were prepared in glycerol and the efficacy of the glycerol layer in mediating the interaction between the metal active sites has been examined using HRTEM analyses. Its high polarity, low vapor pressure, long relaxation time, and high acoustic impedance mean that excellent results were also obtained when the reaction media was subjected to ultrasound (US) and MW irradiation. US has been shown to play an important role in the process via its ability to enhance CuNPs dispersion, favor mechanical depassivation and increase catalytic active surface area, while MW irradiation shortened the reaction time from some hours to a few minutes. These synergistic combinations promoted the exhaustive reduction of nitrobenzene to aniline and facilitated the scale-up of the protocol for its optimized use in industrial MW reactors.

3.
J Chem Technol Biotechnol ; 93(5): 1219-1227, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29780194

RESUMEN

The chemical industry has witnessed many important developments during past decades largely enabled by process intensification techniques. Some of them are already proven at commercial scale (e.g. reactive distillation) while others (e.g. ultrasound-assisted extraction/crystallization/reaction) are on their way to becoming the next-generation technologies. This article focuses on the advances of ultrasound (US)-assisted technologies that could lead in the near future to significant improvements in commercial activities. The aim is to provide an authoritative discussion on US-assisted technologies that are currently emerging from the research environment into the chemical industry, as well as give an overview of the current state-of-the-art applications of US in chemical processing (e.g. enzymatic reactive distillation, crystallization of API). Sufficient information is included to allow the assessment of US-assisted technologies and the challenges for implementation, as well as their potential for commercial applications. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

4.
Ultrason Sonochem ; 43: 184-192, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29555274

RESUMEN

Industrial synthesis of enantiopure compounds is nowadays heavily based on the separation of racemates through crystallization processes. Although the application of ultrasound in solution crystallization processes (sonocrystallization) has become a promising emerging technology, offering several benefits (e.g. reduction of the induction time and narrowing of the metastable zone width, control over the product size, shape and polymorphic modification), little attention has been paid so far to the effects of ultrasound on chiral crystallization processes. Several recent studies have reported on the application of acoustic energy to crystallization processes that separate enantiomers, ranging from classical (diastereomeric) resolution and preferential crystallization to new and emerging processes such as attrition-enhanced deracemization (Viedma ripening). A variety of interesting effects have been observed, which include among others, enhanced crystallization yield with higher enantiomeric purity crystals, spontaneous mirror symmetry breaking crystallization, formation of metastable conglomerate crystals and enhanced deracemization rates. The objective of this review is to provide an overview of the effects of ultrasound on chiral crystallization and outline several aspects of interest in this emerging field.

5.
Ultrason Sonochem ; 32: 68-78, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27150747

RESUMEN

The Villermaux-Dushman reaction is a widely used technique to study micromixing efficiencies with and without sonication. This paper shows that ultrasound can interfere with this reaction by sonolysis of potassium iodide, which is excessively available in the Villermaux-Dushman solution, into triiodide ions. Some corrective actions, to minimize this interference, are proposed. Furthermore, the effect of ultrasonic frequency, power dissipation, probe tip surface area and stirring speed on micromixing were investigated. The power and frequency seem to have a significant impact on micromixing in contrast to the stirring speed and probe tip surface area. Best micromixing was observed with a 24kHz probe and high power intensities. Experiments with different frequencies but a constant power intensity, emitter surface, stirring speed, cavitation bubble type and reactor design showed best micromixing for the highest frequency of 1135kHz. Finally, these results were used to test the power law model of Rahimi et al. This model was not able to predict micromixing accurately and the addition of the frequency, as an additional parameter, was needed to improve the simulations.

6.
Ultrason Sonochem ; 26: 64-72, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25640681

RESUMEN

The influence of ultrasonic frequency and intensity on particle shape, tap density and particle size distribution was investigated during the precipitation of manganese carbonate. For the first time, a broad frequency range of 94 till 1135 kHz was studied in one single reactor setup. Smaller and more spherical particles were observed during sonication compared to silent conditions. Lower frequencies and increased intensities result in smaller and more spherical particles. The most spherical particles with superior tap densities are obtained at the lowest frequency and most elevated intensity. Moreover, the results indicate that a particle size threshold exists, below which the particle size cannot be reduced by a further increase of the ultrasonic intensity or reduction of the frequency. Sonication of already formed spherical powders resulted in particles with smaller sizes but unaffected shapes. Finally, one test with pulsed ultrasonic irradiation resulted in equally sized particles with similar sphericity as the ones produced under continuous sonication.

7.
Colloids Surf B Biointerfaces ; 126: 510-9, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25604617

RESUMEN

The size of colloidal particles in food products has a considerable impact on the product's physicochemical, functional and sensory characteristics. Measurement techniques to monitor the size of suspended particles could, therefore, help to further reduce the variability in production processes and promote the development of new food products with improved properties. Visible and near-infrared (Vis/NIR) spectroscopy is already widely used to measure the composition of agricultural and food products. However, this technology can also be consulted to acquire microstructure-related scattering properties of food products. In this study, the effect of the fat globule size on the Vis/NIR bulk scattering properties of milk was investigated. Variability in fat globule size distribution was created using ultrasonic homogenization of raw milk. Reduction of the fat globule size resulted in a higher wavelength-dependency of both the Vis/NIR bulk scattering coefficient and the scattering anisotropy factor. Moreover, the anisotropy factor and the bulk scattering coefficients for wavelengths above 600 nm were reduced and were dominated by Rayleigh scattering. Additionally, the bulk scattering properties could be well (R(2) ≥ 0.990) estimated from measured particle size distributions by consulting an algorithm based on the Mie solution. Future research could aim at the inversion of this model to estimate the particle size distributions from Vis/NIR spectroscopic measurements.


Asunto(s)
Leche/química , Ultrasonido , Animales , Rayos Láser , Fenómenos Ópticos , Tamaño de la Partícula , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja Corta , Propiedades de Superficie
8.
Ultrason Sonochem ; 20(6): 1345-52, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23618851

RESUMEN

This paper presents a three-dimensional numercial simulation of sonochemical degradation upon cavitational activity. The model relates the simulation of the acoustic pressure distribution to the sonochemical reaction rate. As a case study, the thermal degradation of carbon tetrachloride during sonication is studied in a tubular milliscale reactor. The model is used to optimize the reactor diameter, ultrasound frequency and power dissipated to the ultrasound transducers. The results indicate that multiple transducers at a moderate power level are more efficient than one transducer with high power level. Furthermore, the average cavity volume fraction is proposed as a reaction independent parameter to estimate the optimal reactor design. Within the results obtained in this paper, it appears possible to optimise reactor design based on this parameter.


Asunto(s)
Ultrasonido/instrumentación , Tetracloruro de Carbono/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA