Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Redox Biol ; 70: 103085, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38359746

RESUMEN

Endothelial dysfunction and endothelial activation are common early events in vascular diseases and can arise from mitochondrial dysfunction. Neurogranin (Ng) is a 17kD protein well known to regulate intracellular Ca2+-calmodulin (CaM) complex signaling, and its dysfunction is significantly implicated in brain aging and neurodegenerative diseases. We found that Ng is also expressed in human aortic endothelial cells (HAECs), and depleting Ng promotes Ca2+-CaM complex-dependent endothelial activation and redox imbalances. Endothelial-specific Ng knockout (Cre-CDH5-Ngf/f) mice demonstrate a significant delay in the flow-mediated dilation (FMD) response. Therefore, it is critical to characterize how endothelial Ng expression regulates reactive oxygen species (ROS) generation and affects cardiovascular disease. Label-free quantification proteomics identified that mitochondrial dysfunction and the oxidative phosphorylation pathway are significantly changed in the aorta of Cre-CDH5-Ngf/f mice. We found that a significant amount of Ng is expressed in the mitochondrial fraction of HAECs using western blotting and colocalized with the mitochondrial marker, COX IV, using immunofluorescence staining. Seahorse assay demonstrated that a lack of Ng decreases mitochondrial respiration. Treatment with MitoEbselen significantly restores the oxygen consumption rate in Ng knockdown cells. With the RoGFP-Orp1 approach, we identified that Ng knockdown increases mitochondrial-specific hydrogen peroxide (H2O2) production, and MitoEbselen treatment significantly reduced mitochondrial ROS (mtROS) levels in Ng knockdown cells. These results suggest that Ng plays a significant role in mtROS production. We discovered that MitoEbselen treatment also rescues decreased eNOS expression and nitric oxide (NO) levels in Ng knockdown cells, which implicates the critical role of Ng in mtROS-NO balance in the endothelial cells.


Asunto(s)
Células Endoteliales , Mitocondrias , Neurogranina , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Neurogranina/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
2.
Exp Mol Pathol ; 127: 104815, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35870494

RESUMEN

Intracellular Ca2+-calmodulin (CaM) signaling plays an important role in Ca2+-CaM-dependent kinase (CaMKII) and calcineurin (CaN)-mediated cardiac biology. While neurogranin (Ng) is known as a major Ca2+-CaM modulator in the brain, its pathophysiological role in cardiac hypertrophy has never been studied before. In the present study, we report that Ng is expressed in the heart and depletion of Ng dysregulates Ca2+ homeostasis and promotes cardiac failure in mice. 10-month-old Ng null mice demonstrate significantly increased heart-to-body weight ratios compared to wild-type. Using histological approaches, we identified that depletion of Ng increases cardiac hypertrophy, fibrosis, and collagen deposition near perivascular areas in the heart tissue of Ng null mice. Ca2+ spark experiments revealed that cardiac myocytes isolated from Ng null mice have decreased spark frequency and width, while the duration of sparks is significantly increased. We also identified that a lack of Ng increases CaMKIIδ signaling and periostin protein expression in these mouse hearts. Overall, we are the first study to explore how Ng expression in the heart plays an important role in Ca2+ homeostasis in cardiac myocytes as well as the pathophysiology of cardiac hypertrophy and fibrosis.


Asunto(s)
Calcio , Neurogranina , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calmodulina/metabolismo , Cardiomegalia/metabolismo , Fibrosis , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Neurogranina/genética , Neurogranina/metabolismo
3.
Mol Oral Microbiol ; 36(1): 12-24, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33040492

RESUMEN

Streptococcus mutans, a major etiological agent of human dental caries, produces membrane vesicles (MVs) that contain protein and extracellular DNA. In this study, functional genomics, along with in vitro biofilm models, was used to identify factors that regulate MV biogenesis. Our results showed that when added to growth medium, MVs significantly enhanced biofilm formation by S. mutans, especially during growth in sucrose. This effect occurred in the presence and absence of added human saliva. Functional genomics revealed several genes, including sfp, which have a major effect on S. mutans MVs. In Bacillus sp. sfp encodes a 4'-phosphopantetheinyl transferase that contributes to surfactin biosynthesis and impacts vesiculogenesis. In S. mutans, sfp resides within the TnSmu2 Genomic Island that supports pigment production associated with oxidative stress tolerance. Compared to the UA159 parent, the Δsfp mutant, TW406, demonstrated a 1.74-fold (p < .05) higher MV yield as measured by BCA protein assay. This mutant also displayed increased susceptibility to low pH and oxidative stressors, as demonstrated by acid killing and hydrogen peroxide challenge assays. Deficiency of bacA, a putative surfactin synthetase homolog within TnSmu2, and especially dac and pdeA that encode a di-adenylyl cyclase and a phosphodiesterase, respectively, also significantly increased MV yield (p < .05). However, elimination of bacA2, a bacitracin synthetase homolog, resulted in a >1.5-fold (p < .05) reduction of MV yield. These results demonstrate that S. mutans MV properties are regulated by genes within and outside of the TnSmu2 island, and that as a major particulate component of the biofilm matrix, MVs significantly influence biofilm formation.


Asunto(s)
Caries Dental , Streptococcus mutans , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Medios de Cultivo , Regulación Bacteriana de la Expresión Génica , Humanos , Streptococcus mutans/genética , Streptococcus mutans/metabolismo
4.
Redox Biol ; 34: 101487, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32173345

RESUMEN

Endothelial nitric oxide (NO) is a critical mediator of vascular function and vascular remodeling. NO is produced by endothelial nitric oxide synthase (eNOS), which is activated by calcium (Ca2+)-dependent and Ca2+-independent pathways. Here, we report that neurogranin (Ng), which regulates Ca2+-calmodulin (CaM) signaling in the brain, is uniquely expressed in endothelial cells (EC) of human and mouse vasculature, and is also required for eNOS regulation. To test the role of Ng in eNOS activation, Ng knockdown in human aortic endothelial cells (HAEC) was performed using Ng SiRNA along with Ng knockout (Ng -/-) in mice. Depletion of Ng expression decreased eNOS activity in HAEC and NO production in mice. We show that Ng expression was decreased by short-term laminar flow and long-them oscillating flow shear stress, and that Ng siRNA with shear stress decreased eNOS expression as well as eNOS phosphorylation at S1177. We further reveled that lack of Ng expression decreases both AKT-dependent eNOS phosphorylation, NF-κB-mediated eNOS expression, and promotes endothelial activation. Our findings also indicate that Ng modulates Ca2+-dependent calcineurin (CaN) activity, which suppresses Ca2+-independent AKT-dependent eNOS signaling. Moreover, deletion of Ng in mice also reduced eNOS activity and caused endothelial dysfunction in flow-mediated dilation experiments. Our results demonstrate that Ng plays a crucial role in Ca2+-CaM-dependent eNOS regulation and contributes to vascular remodeling, which is important for the pathophysiology of cardiovascular disease.


Asunto(s)
Neurogranina , Óxido Nítrico Sintasa de Tipo III , Animales , Células Cultivadas , Células Endoteliales/metabolismo , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación
5.
Proteomics ; 20(1): e1900266, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31814311

RESUMEN

Dysfunction of glutamate neurotransmission in the nucleus accumbens (NAc) has been implicated in the pathophysiology of alcohol use disorders (AUD). Neurogranin (Ng) is exclusively expressed in the brain and mediates N-methyl-d-aspartate receptor (NMDAR) hypo-function by regulating the intracellular calcium-calmodulin (Ca2+ -CaM) pathway. Ng null mice (Ng-/- mice) demonstrate increased alcohol drinking compared to wild-type mice, while also showing less tolerance to the effect of alcohol. To identify the molecular mechanism related to alcohol seeking, both in vivo microdialysis and label-free quantification proteomics comparing Ng genotype and effects of alcohol treatment on the NAc are utilized. There is significant difference in glutamate and gamma-aminobutyric acid (GABA) neurotransmission between genotypes; however, alcohol administration normalizes both glutamate and GABA levels in the NAc. Using label-free proteomics, 427 protein expression changes are identified against alcohol treatment in the NAc among 4347 total proteins detected. Bioinformatics analyses reveal significant molecular differences in Ng null mice in response to acute alcohol treatment. Ingenuity pathway analysis found that the AKT network is altered significantly between genotypes, which may increase the sensitivity of alcohol in Ng null mice. The pharmacoproteomics results presented here illustrate a possible molecular basis of the alcohol sensitivity through Ng signaling in the NAc.


Asunto(s)
Etanol/farmacología , Neurogranina/genética , Núcleo Accumbens/efectos de los fármacos , Proteoma/metabolismo , Proteómica/métodos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Depresores del Sistema Nervioso Central/administración & dosificación , Depresores del Sistema Nervioso Central/farmacocinética , Depresores del Sistema Nervioso Central/farmacología , Cromatografía Liquida/métodos , Etanol/administración & dosificación , Etanol/farmacocinética , Genotipo , Ácido Glutámico/metabolismo , Masculino , Ratones Noqueados , Microdiálisis/métodos , Neurogranina/metabolismo , Núcleo Accumbens/metabolismo , Transducción de Señal/efectos de los fármacos , Espectrometría de Masas en Tándem/métodos , Ácido gamma-Aminobutírico/metabolismo
6.
Front Microbiol ; 9: 2130, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30254619

RESUMEN

MecA is an adaptor protein that guides the ClpC/P-mediated proteolysis. A S. mutans MecA-deficient mutant was constructed by double-crossover allelic exchange and analyzed for the effects of such a deficiency on cell biology and biofilm formation. Unlike the wild-type, UA159, the mecA mutant, TW416, formed mucoid and smooth colonies, severely clumped in broth and had a reduced growth rate. Transmission electron microscopy analysis revealed that TW416 grows primarily in chains of giant "swollen" cells with multiple asymmetric septa, unlike the coccoid form of UA159. As compared to UA159, biofilm formation by TW416 was significantly reduced regardless of the carbohydrate sources used for growth (P < 0.001). Western blot analysis of TW416 whole cell lysates showed a reduced expression of the glucosyltransferase GtfC and GtfB, as well as the P1 and WapA adhesins providing an explanation for the defective biofilm formation of TW416. When analyzed by a colorimetric assay, the cell wall phosphate of the mutant murein sacculi was almost 20-fold lower than the parent strain (P < 0.001). Interestingly, however, when analyzed using immunoblotting of the murein sacculi preps with UA159 whole cell antiserum as a probe, TW416 was shown to possess significantly higher signal intensity as compared to the wild-type. There is also evidence that MecA in S. mutans is more than an adaptor protein, although how it modulates the bacterial pathophysiology, including cell envelope biogenesis, cell division, and biofilm formation awaits further investigation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA