Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33931501

RESUMEN

Spinal muscular atrophy (SMA) is a motoneuron disease caused by deletions of the Survival of Motoneuron 1 gene (SMN1) and low SMN protein levels. SMN restoration is the concept behind a number of recently approved drugs which result in impressive yet limited effects. Since SMN has already been enhanced in treated patients, complementary SMN-independent approaches are needed. Previously, a number of altered signaling pathways which regulate motoneuron degeneration have been identified as candidate targets. However, signaling pathways form networks, and their connectivity is still unknown in SMA. Here, we used presymptomatic SMA mice to elucidate the network of altered signaling in SMA. The SMA network is structured in two clusters with AKT and 14-3-3 ζ/δ in their centers. Both clusters are connected by B-Raf as a major signaling hub. The direct interaction of B-Raf with 14-3-3 ζ/δ is important for an efficient neurotrophic activation of the MEK/ERK pathway and crucial for motoneuron survival. Further analyses in SMA mice revealed that both proteins were down-regulated in motoneurons and the spinal cord with B-Raf being reduced at presymptomatic stages. Primary fibroblasts and iPSC-derived motoneurons from SMA patients both showed the same pattern of down-regulation. This mechanism is conserved across species since a Caenorhabditis elegans SMA model showed less expression of the B-Raf homolog lin-45 Accordingly, motoneuron survival was rescued by a cell autonomous lin-45 expression in a C. elegans SMA model resulting in improved motor functions. This rescue was effective even after the onset of motoneuron degeneration and mediated by the MEK/ERK pathway.


Asunto(s)
Proteínas 14-3-3/genética , Proteínas de Caenorhabditis elegans/genética , Atrofia Muscular Espinal/genética , Degeneración Nerviosa/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Quinasas raf/genética , Animales , Caenorhabditis elegans/genética , Modelos Animales de Enfermedad , Fibroblastos , Regulación de la Expresión Génica , Humanos , Ratones , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/patología , Degeneración Nerviosa/patología , Proteínas Proto-Oncogénicas B-raf/genética , Transducción de Señal/genética , Médula Espinal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA