Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Commun ; 5: 5115, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25296113

RESUMEN

Opsin, the rhodopsin apoprotein, was recently shown to be an ATP-independent flippase (or scramblase) that equilibrates phospholipids across photoreceptor disc membranes in mammalian retina, a process required for disc homoeostasis. Here we show that scrambling is a constitutive activity of rhodopsin, distinct from its light-sensing function. Upon reconstitution into vesicles, discrete conformational states of the protein (rhodopsin, a metarhodopsin II-mimic, and two forms of opsin) facilitated rapid (>10,000 phospholipids per protein per second) scrambling of phospholipid probes. Our results indicate that the large conformational changes involved in converting rhodopsin to metarhodopsin II are not required for scrambling, and that the lipid translocation pathway either lies near the protein surface or involves membrane packing defects in the vicinity of the protein. In addition, we demonstrate that ß2-adrenergic and adenosine A2A receptors scramble lipids, suggesting that rhodopsin-like G protein-coupled receptors may play an unexpected moonlighting role in re-modelling cell membranes.


Asunto(s)
Proteínas de Transferencia de Fosfolípidos/fisiología , Receptores Adrenérgicos beta 2/fisiología , Rodopsina/fisiología , Animales , Bovinos , Opsinas/fisiología , Conformación Proteica , Receptores de Adenosina A2/fisiología
2.
Structure ; 21(12): 2175-85, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24210756

RESUMEN

The function of G protein-coupled receptors (GPCRs) can be modulated by a number of endogenous allosteric molecules. In this study, we used molecular dynamics, radioligand binding, and thermostability experiments to elucidate the role of the recently discovered sodium ion binding site in the allosteric modulation of the human A(2A) adenosine receptor, conserved among class A GPCRs. While the binding of antagonists and sodium ions to the receptor was noncompetitive in nature, the binding of agonists and sodium ions appears to require mutually exclusive conformational states of the receptor. Amiloride analogs can also bind to the sodium binding pocket, showing distinct patterns of agonist and antagonist modulation. These findings suggest that physiological concentrations of sodium ions affect functionally relevant conformational states of GPCRs and can help to design novel synthetic allosteric modulators or bitopic ligands exploiting the sodium ion binding pocket.


Asunto(s)
Receptor de Adenosina A2A/metabolismo , Sodio/metabolismo , Agonistas del Receptor de Adenosina A2/química , Antagonistas del Receptor de Adenosina A2/química , Regulación Alostérica , Sitio Alostérico , Amilorida/análogos & derivados , Amilorida/química , Secuencia de Aminoácidos , Cationes Monovalentes , Células HEK293 , Calor , Humanos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Conformación Proteica , Estabilidad Proteica , Ensayo de Unión Radioligante , Receptor de Adenosina A2A/química , Sodio/química
3.
Nature ; 499(7459): 444-9, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23863937

RESUMEN

Binding of the glucagon peptide to the glucagon receptor (GCGR) triggers the release of glucose from the liver during fasting; thus GCGR plays an important role in glucose homeostasis. Here we report the crystal structure of the seven transmembrane helical domain of human GCGR at 3.4 Å resolution, complemented by extensive site-specific mutagenesis, and a hybrid model of glucagon bound to GCGR to understand the molecular recognition of the receptor for its native ligand. Beyond the shared seven transmembrane fold, the GCGR transmembrane domain deviates from class A G-protein-coupled receptors with a large ligand-binding pocket and the first transmembrane helix having a 'stalk' region that extends three alpha-helical turns above the plane of the membrane. The stalk positions the extracellular domain (~12 kilodaltons) relative to the membrane to form the glucagon-binding site that captures the peptide and facilitates the insertion of glucagon's amino terminus into the seven transmembrane domain.


Asunto(s)
Receptores de Glucagón/química , Receptores de Glucagón/clasificación , Secuencia de Aminoácidos , Sitios de Unión , Membrana Celular/metabolismo , Cristalografía por Rayos X , Glucagón/química , Glucagón/metabolismo , Humanos , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Terciaria de Proteína , Receptores CXCR4/química , Receptores CXCR4/clasificación , Receptores de Glucagón/genética , Receptores de Glucagón/metabolismo
4.
Methods ; 59(3): 301-15, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23270813

RESUMEN

Microscale thermophoresis (MST) allows for quantitative analysis of protein interactions in free solution and with low sample consumption. The technique is based on thermophoresis, the directed motion of molecules in temperature gradients. Thermophoresis is highly sensitive to all types of binding-induced changes of molecular properties, be it in size, charge, hydration shell or conformation. In an all-optical approach, an infrared laser is used for local heating, and molecule mobility in the temperature gradient is analyzed via fluorescence. In standard MST one binding partner is fluorescently labeled. However, MST can also be performed label-free by exploiting intrinsic protein UV-fluorescence. Despite the high molecular weight ratio, the interaction of small molecules and peptides with proteins is readily accessible by MST. Furthermore, MST assays are highly adaptable to fit to the diverse requirements of different biomolecules, such as membrane proteins to be stabilized in solution. The type of buffer and additives can be chosen freely. Measuring is even possible in complex bioliquids like cell lysate allowing close to in vivo conditions without sample purification. Binding modes that are quantifiable via MST include dimerization, cooperativity and competition. Thus, its flexibility in assay design qualifies MST for analysis of biomolecular interactions in complex experimental settings, which we herein demonstrate by addressing typically challenging types of binding events from various fields of life science.


Asunto(s)
Proteínas/química , Espectrometría de Fluorescencia/métodos , Animales , Unión Competitiva , Dimerización , Proteína Adaptadora GRB2/química , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/química , Rayos Láser , Conformación Molecular , Unión Proteica , Proteínas Protozoarias/química , Ratas , Receptor de Adenosina A2A/química , Receptores de Neurotensina/química , Temperatura , Termodinámica , Inhibidores de beta-Lactamasas , beta-Lactamasas/química
5.
Methods ; 55(4): 342-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21903166

RESUMEN

The lipidic cubic phase (LCP) has repeatedly proven to serve as a successful membrane-mimetic matrix for a variety of difficult-to-crystallize membrane proteins. While monoolein has been the predominant lipid of choice, there is a growing need for the characterization and use of other LCP host lipids, allowing exploration of a range of structural parameters such as bilayer thickness and curvature for optimal insertion, stability and crystallogenesis of membrane proteins. Here, we describe the development of a high-throughput (HT) pipeline to employ small angle X-ray scattering (SAXS) - the most direct technique to identify lipid mesophases and measure their structural parameters - to interrogate rapidly a large number of lipid samples under a variety of conditions, similar to those encountered during crystallization. Leveraging the identical setup format for LCP crystallization trials, this method allows the quickly assessment of lipid matrices for their utility in membrane protein crystallization, and could inform the tailoring of lipid and precipitant conditions to overcome specific crystallization challenges. As proof of concept, we present HT LCP-SAXS analysis of lipid samples made of monoolein with and without cholesterol, and of monovaccenin, equilibrated with solutions used for crystallization trials and LCP fluorescence recovery after photobleaching (FRAP) experiments.


Asunto(s)
Proteínas de la Membrana/química , Colesterol/química , Ácido Cítrico/química , Cristalización , Recuperación de Fluorescencia tras Fotoblanqueo , Glicéridos/química , Monoglicéridos/química , Polietilenglicoles/química , Reproducibilidad de los Resultados , Dispersión del Ángulo Pequeño , Difracción de Rayos X
6.
Proc Natl Acad Sci U S A ; 107(23): 10708-12, 2010 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-20498078

RESUMEN

The cadherin superfamily encodes more than 100 receptors with diverse functions in tissue development and homeostasis. Classical cadherins mediate adhesion by binding interactions that depend on their N-terminal extracellular cadherin (EC) domains, which swap N-terminal beta-strands. Sequence alignments suggest that the strand-swap binding mode is not commonly used by functionally divergent cadherins. Here, we have determined the structure of the EC1-EC2 domains of cadherin 23 (CDH23), which binds to protocadherin 15 (PCDH15) to form tip links of mechanosensory hair cells. Unlike classical cadherins, the CDH23 N terminus contains polar amino acids that bind Ca(2+). The N terminus of PCDH15 also contains polar amino acids. Mutations in polar amino acids within EC1 of CDH23 and PCDH15 abolish interaction between the two cadherins. PCDH21 and PCDH24 contain similarly charged N termini, suggesting that a subset of cadherins share a common interaction mechanism that differs from the strand-swap binding mode of classical cadherins.


Asunto(s)
Cadherinas/química , Adhesividad , Secuencia de Aminoácidos , Animales , Proteínas Relacionadas con las Cadherinas , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular , Secuencia Conservada , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología Estructural de Proteína
7.
J Virol ; 84(6): 3059-67, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20042502

RESUMEN

With an estimated 40% of the world population at risk, dengue poses a significant threat to human health, especially in tropical and subtropical regions. Preventative and curative efforts, such as vaccine development and drug discovery, face additional challenges due to the occurrence of four antigenically distinct serotypes of the causative dengue virus (DEN1 to -4). Complex immune responses resulting from repeat assaults by the different serotypes necessitate simultaneous targeting of all forms of the virus. One of the promising targets for drug development is the highly conserved two-component viral protease NS2B-NS3, which plays an essential role in viral replication by processing the viral precursor polyprotein into functional proteins. In this paper, we report the 2.1-A crystal structure of the DEN1 NS2B hydrophilic core (residues 49 to 95) in complex with the NS3 protease domain (residues 1 to 186) carrying an internal deletion in the N terminus (residues 11 to 20). While the overall folds within the protease core are similar to those of DEN2 and DEN4 proteases, the conformation of the cofactor NS2B is dramatically different from those of other flaviviral apoprotease structures. The differences are especially apparent within its C-terminal region, implicated in substrate binding. The structure reveals for the first time serotype-specific structural elements in the dengue virus family, with the reported alternate conformation resulting from a unique metal-binding site within the DEN1 sequence. We also report the identification of a 10-residue stretch within NS3pro that separates the substrate-binding function from the catalytic turnover rate of the enzyme. Implications for broad-spectrum drug discovery are discussed.


Asunto(s)
Virus del Dengue/enzimología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Virus del Dengue/clasificación , Virus del Dengue/inmunología , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , ARN Helicasas/química , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Serotipificación , Relación Estructura-Actividad , Proteínas no Estructurales Virales/genética
8.
J Virol ; 83(24): 12998-3008, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19828617

RESUMEN

The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand beta-sheet holding two alpha-helices of three and four turns that are oriented antiparallel to the beta-strands. Two antiparallel two-strand beta-sheets and two 3(10)-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold.


Asunto(s)
ARN Polimerasa Dependiente del ARN/química , ARN/metabolismo , Proteínas no Estructurales Virales/química , Secuencia de Aminoácidos , Sitios de Unión , Espectroscopía de Resonancia Magnética , Conformación Molecular , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
9.
J Virol ; 83(4): 1823-36, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19052085

RESUMEN

The nuclear magnetic resonance (NMR) structure of a central segment of the previously annotated severe acute respiratory syndrome (SARS)-unique domain (SUD-M, for "middle of the SARS-unique domain") in SARS coronavirus (SARS-CoV) nonstructural protein 3 (nsp3) has been determined. SUD-M(513-651) exhibits a macrodomain fold containing the nsp3 residues 528 to 648, and there is a flexibly extended N-terminal tail with the residues 513 to 527 and a C-terminal flexible tail of residues 649 to 651. As a follow-up to this initial result, we also solved the structure of a construct representing only the globular domain of residues 527 to 651 [SUD-M(527-651)]. NMR chemical shift perturbation experiments showed that SUD-M(527-651) binds single-stranded poly(A) and identified the contact area with this RNA on the protein surface, and electrophoretic mobility shift assays then confirmed that SUD-M has higher affinity for purine bases than for pyrimidine bases. In a further search for clues to the function, we found that SUD-M(527-651) has the closest three-dimensional structure homology with another domain of nsp3, the ADP-ribose-1"-phosphatase nsp3b, although the two proteins share only 5% sequence identity in the homologous sequence regions. SUD-M(527-651) also shows three-dimensional structure homology with several helicases and nucleoside triphosphate-binding proteins, but it does not contain the motifs of catalytic residues found in these structural homologues. The combined results from NMR screening of potential substrates and the structure-based homology studies now form a basis for more focused investigations on the role of the SARS-unique domain in viral infection.


Asunto(s)
Espectroscopía de Resonancia Magnética , ARN Polimerasa Dependiente del ARN/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Proteínas no Estructurales Virales/química , Ensayo de Cambio de Movilidad Electroforética , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , ARN/metabolismo , Proteínas de Unión al ARN/química
10.
J Virol ; 82(11): 5279-94, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18367524

RESUMEN

Severe acute respiratory syndrome (SARS) coronavirus infection and growth are dependent on initiating signaling and enzyme actions upon viral entry into the host cell. Proteins packaged during virus assembly may subsequently form the first line of attack and host manipulation upon infection. A complete characterization of virion components is therefore important to understanding the dynamics of early stages of infection. Mass spectrometry and kinase profiling techniques identified nearly 200 incorporated host and viral proteins. We used published interaction data to identify hubs of connectivity with potential significance for virion formation. Surprisingly, the hub with the most potential connections was not the viral M protein but the nonstructural protein 3 (nsp3), which is one of the novel virion components identified by mass spectrometry. Based on new experimental data and a bioinformatics analysis across the Coronaviridae, we propose a higher-resolution functional domain architecture for nsp3 that determines the interaction capacity of this protein. Using recombinant protein domains expressed in Escherichia coli, we identified two additional RNA-binding domains of nsp3. One of these domains is located within the previously described SARS-unique domain, and there is a nucleic acid chaperone-like domain located immediately downstream of the papain-like proteinase domain. We also identified a novel cysteine-coordinated metal ion-binding domain. Analyses of interdomain interactions and provisional functional annotation of the remaining, so-far-uncharacterized domains are presented. Overall, the ensemble of data surveyed here paint a more complete picture of nsp3 as a conserved component of the viral protein processing machinery, which is intimately associated with viral RNA in its role as a virion component.


Asunto(s)
Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Animales , Chlorocebus aethiops , Cobalto/metabolismo , Ácidos Nucleicos/metabolismo , Filogenia , Unión Proteica , Proteínas Quinasas/metabolismo , Proteómica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sensibilidad y Especificidad , Células Vero , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/aislamiento & purificación , Virión/genética , Virión/metabolismo
11.
Antiviral Res ; 78(1): 47-50, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18054092

RESUMEN

Emerging and re-emerging pathogens and bioterror threats require an organized and coherent response from the worldwide research community to maximize available resources and competencies with the primary goals to understand the pathogen and enable intervention. In 2001, the Structural Proteomics In Europe (SPINE) project prototyped the pan-viral structural genomic approach, and the Severe Acute Respiratory Syndrome (SARS) outbreak in 2003 accelerated the concept of structural characterization of all proteins from a viral proteome and the interaction with their host partners. Following that approach, in 2004 the center for Functional and Structural Proteomics for SARS-CoV related proteins was initiated as part of the US NIH NIAID proteomics resource centers. Across worldwide efforts in Asia, Europe and America, the international research teams working on SARS-CoV have now determined experimental structural information for 45% of the SARS-CoV proteins and 53% of all its soluble proteins. This data is fully available to the scientific community and is providing an unprecedented level of insight to this class of RNA viruses. The efforts and results by the international scientific community to the SARS outbreak are serving as an example and roadmap of a rapid response using modern research methods.


Asunto(s)
Enfermedades Transmisibles Emergentes/virología , Cooperación Internacional , Proteómica/tendencias , Investigación , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Proteínas Virales/química , Humanos , Modelos Moleculares , Investigación/tendencias , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Síndrome Respiratorio Agudo Grave/virología , Proteínas Virales/metabolismo
12.
J Virol ; 81(21): 12049-60, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17728234

RESUMEN

This paper describes the structure determination of nsp3a, the N-terminal domain of the severe acute respiratory syndrome coronavirus (SARS-CoV) nonstructural protein 3. nsp3a exhibits a ubiquitin-like globular fold of residues 1 to 112 and a flexibly extended glutamic acid-rich domain of residues 113 to 183. In addition to the four beta-strands and two alpha-helices that are common to ubiquitin-like folds, the globular domain of nsp3a contains two short helices representing a feature that has not previously been observed in these proteins. Nuclear magnetic resonance chemical shift perturbations showed that these unique structural elements are involved in interactions with single-stranded RNA. Structural similarities with proteins involved in various cell-signaling pathways indicate possible roles of nsp3a in viral infection and persistence.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , ARN Polimerasa Dependiente del ARN/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Proteínas no Estructurales Virales/química , Secuencia de Aminoácidos , Relación Dosis-Respuesta a Droga , Espectrometría de Masas , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Viral/química , ARN Polimerasa Dependiente del ARN/metabolismo , Homología de Secuencia de Aminoácido , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/química
13.
J Virol ; 81(12): 6700-8, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17409150

RESUMEN

Mature nonstructural protein-15 (nsp15) from the severe acute respiratory syndrome coronavirus (SARS-CoV) contains a novel uridylate-specific Mn2+-dependent endoribonuclease (NendoU). Structure studies of the full-length form of the obligate hexameric enzyme from two CoVs, SARS-CoV and murine hepatitis virus, and its monomeric homologue, XendoU from Xenopus laevis, combined with mutagenesis studies have implicated several residues in enzymatic activity and the N-terminal domain as the major determinant of hexamerization. However, the tight link between hexamerization and enzyme activity in NendoUs has remained an enigma. Here, we report the structure of a trimmed, monomeric form of SARS-CoV nsp15 (residues 28 to 335) determined to a resolution of 2.9 A. The catalytic loop (residues 234 to 249) with its two reactive histidines (His 234 and His 249) is dramatically flipped by approximately 120 degrees into the active site cleft. Furthermore, the catalytic nucleophile Lys 289 points in a diametrically opposite direction, a consequence of an outward displacement of the supporting loop (residues 276 to 295). In the full-length hexameric forms, these two loops are packed against each other and are stabilized by intimate intersubunit interactions. Our results support the hypothesis that absence of an adjacent monomer due to deletion of the hexamerization domain is the most likely cause for disruption of the active site, offering a structural basis for why only the hexameric form of this enzyme is active.


Asunto(s)
ARN Polimerasa Dependiente del ARN/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Proteínas no Estructurales Virales/química , Sitio Alostérico , Animales , Sitios de Unión , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Dimerización , Electroforesis en Gel de Poliacrilamida , Endorribonucleasas , Manganeso/química , Conformación Molecular , Mutagénesis , Conformación Proteica , Xenopus laevis
14.
J Virol ; 81(8): 3913-21, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17229691

RESUMEN

Conserved among all coronaviruses are four structural proteins: the matrix (M), small envelope (E), and spike (S) proteins that are embedded in the viral membrane and the nucleocapsid phosphoprotein (N), which exists in a ribonucleoprotein complex in the lumen. The N-terminal domain of coronaviral N proteins (N-NTD) provides a scaffold for RNA binding, while the C-terminal domain (N-CTD) mainly acts as oligomerization modules during assembly. The C terminus of the N protein anchors it to the viral membrane by associating with M protein. We characterized the structures of N-NTD from severe acute respiratory syndrome coronavirus (SARS-CoV) in two crystal forms, at 1.17 A (monoclinic) and at 1.85 A (cubic), respectively, resolved by molecular replacement using the homologous avian infectious bronchitis virus (IBV) structure. Flexible loops in the solution structure of SARS-CoV N-NTD are now shown to be well ordered around the beta-sheet core. The functionally important positively charged beta-hairpin protrudes out of the core, is oriented similarly to that in the IBV N-NTD, and is involved in crystal packing in the monoclinic form. In the cubic form, the monomers form trimeric units that stack in a helical array. Comparison of crystal packing of SARS-CoV and IBV N-NTDs suggests a common mode of RNA recognition, but they probably associate differently in vivo during the formation of the ribonucleoprotein complex. Electrostatic potential distribution on the surface of homology models of related coronaviral N-NTDs suggests that they use different modes of both RNA recognition and oligomeric assembly, perhaps explaining why their nucleocapsids have different morphologies.


Asunto(s)
Proteínas de la Nucleocápside/química , Nucleocápside/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Secuencia de Aminoácidos , Proteínas de la Nucleocápside de Coronavirus , Cristalografía por Rayos X , Genoma Viral , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de la Nucleocápside/metabolismo , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Homología de Secuencia de Aminoácido , Proteínas Virales/genética
15.
J Virol ; 80(16): 7894-901, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16873246

RESUMEN

The severe acute respiratory syndrome coronavirus (SARS-CoV) possesses a large 29.7-kb positive-stranded RNA genome. The first open reading frame encodes replicase polyproteins 1a and 1ab, which are cleaved to generate 16 "nonstructural" proteins, nsp1 to nsp16, involved in viral replication and/or RNA processing. Among these, nsp10 plays a critical role in minus-strand RNA synthesis in a related coronavirus, murine hepatitis virus. Here, we report the crystal structure of SARS-CoV nsp10 at a resolution of 1.8 A as determined by single-wavelength anomalous dispersion using phases derived from hexatantalum dodecabromide. nsp10 is a single domain protein consisting of a pair of antiparallel N-terminal helices stacked against an irregular beta-sheet, a coil-rich C terminus, and two Zn fingers. nsp10 represents a novel fold and is the first structural representative of this family of Zn finger proteins found so far exclusively in coronaviruses. The first Zn finger coordinates a Zn2+ ion in a unique conformation. The second Zn finger, with four cysteines, is a distant member of the "gag-knuckle fold group" of Zn2+-binding domains and appears to maintain the structural integrity of the C-terminal tail. A distinct clustering of basic residues on the protein surface suggests a nucleic acid-binding function. Gel shift assays indicate that in isolation, nsp10 binds single- and double-stranded RNA and DNA with high-micromolar affinity and without obvious sequence specificity. It is possible that nsp10 functions within a larger RNA-binding protein complex. However, its exact role within the replicase complex is still not clear.


Asunto(s)
Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Proteínas no Estructurales Virales/química , Dedos de Zinc , Secuencia de Aminoácidos , Cristalografía por Rayos X , Datos de Secuencia Molecular , Conformación Proteica , Pliegue de Proteína , Proteínas no Estructurales Virales/fisiología
16.
Structure ; 13(11): 1665-75, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16271890

RESUMEN

The crystal structure of a conserved domain of nonstructural protein 3 (nsP3) from severe acute respiratory syndrome coronavirus (SARS-CoV) has been solved by single-wavelength anomalous dispersion to 1.4 A resolution. The structure of this "X" domain, seen in many single-stranded RNA viruses, reveals a three-layered alpha/beta/alpha core with a macro-H2A-like fold. The putative active site is a solvent-exposed cleft that is conserved in its three structural homologs, yeast Ymx7, Archeoglobus fulgidus AF1521, and Er58 from E. coli. Its sequence is similar to yeast YBR022W (also known as Poa1P), a known phosphatase that acts on ADP-ribose-1''-phosphate (Appr-1''-p). The SARS nsP3 domain readily removes the 1'' phosphate group from Appr-1''-p in in vitro assays, confirming its phosphatase activity. Sequence and structure comparison of all known macro-H2A domains combined with available functional data suggests that proteins of this superfamily form an emerging group of nucleotide phosphatases that dephosphorylate Appr-1''-p.


Asunto(s)
Adenosina Difosfato Ribosa/análogos & derivados , Secuencia Conservada/fisiología , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/fisiología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/fisiología , Adenosina Difosfato Ribosa/metabolismo , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Fosforilación , Estructura Terciaria de Proteína/fisiología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Análisis de Secuencia de Proteína , Relación Estructura-Actividad
17.
Biomacromolecules ; 6(2): 741-51, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15762638

RESUMEN

The role of individual matrix proteins in avian eggshell calcification is poorly understood despite numerous attempts to characterize and localize their presence in the eggshell matrix. Ansocalcin, the major matrix protein from goose eggshell, was found to induce the formation of calcite crystal aggregates under in vitro. Owing to its high similarity with the chicken eggshell matrix protein ovocleidin 17 (OC-17), a comparative investigation has been carried out to understand the structure-function relationship. RP-HPLC shows that ansocalcin is the major component in extracts of goose eggshells before and after bleach treatment. However, OC-17 was observed in minute quantities in the extract of bleach-treated chicken eggshells. In vitro crystal growth experiments showed that OC-17 and ansocalcin interact differently with the calcite crystals formed. Circular dichroism, intrinsic tryptophan fluorescence, and dynamic light scattering studies showed that, under the conditions used in our experiments, OC-17 does not aggregate in solution or induce the nucleation of calcite aggregates in the concentration range used. These observations indicate that OC-17 and ansocalcin play different roles in the eggshell calcification. To our knowledge, this is the first report on the comparison of properties of homologous eggshell proteins that belong to the same phylogeny.


Asunto(s)
Proteínas del Huevo/química , Proteínas de la Matriz Extracelular/química , Animales , Aves , Calcificación Fisiológica , Carbonato de Calcio/metabolismo , Proteínas del Huevo/fisiología , Proteínas de la Matriz Extracelular/fisiología , Modelos Moleculares , Análisis Espectral
18.
Biochem Pharmacol ; 69(4): 669-78, 2005 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15670585

RESUMEN

A new family of weak K(+) channel toxins (designated kappa-KTx) with a novel "bi-helical" scaffold has recently been characterized from Heterometrus fulvipes (Scorpionidae) venom. Based on the presence of the minimum functional dyad (Y5 and K19), kappa-hefutoxin-1 (kappa-KTx1.1) was investigated and found to block Kv 1.2 (IC(50) approximately 40 microM) and Kv 1.3 (IC(50) approximately 150 microM) channels. In the present study, kappa-KTx1.3, that shares approximately 60% identity with kappa-hefutoxin 1, has been isolated from Heterometrus spinifer venom. Interestingly, despite the presence of the functional dyad (Y5 and K19), kappa-KTx1.3 failed to reproduce the K(+) channel blocking activity of kappa-hefutoxin-1. Since the dyad lysine in kappa-KTx1.3 was flanked by another lysine (K20), it was hypothesized that this additional positive charge could hinder the critical electrostatic interactions known to occur between the dyad lysine and the Kv 1 channel selectivity filter. Hence, mutants of kappa-KTx1.3, substituting K20 with a neutral (K20A) or a negatively (K20E) or another positively (K20R) charged amino acid were synthesized. kappa-KTx1.3 K20E, in congruence with kappa-hefutoxin 1 with respect to subtype selectivity and affinity, produced blockade of Kv 1.2 (IC(50) = 36.8+/-4.9 microM) and Kv 1.3 (IC(50)=53.7+/-6.7 microM) but not Kv 1.1 channels. kappa-KTx1.3 K20A produced blockade of both Kv 1.2 (IC(50) = 36.9+/-4.9 microM) and Kv 1.3 (IC(50)=115.7+/-7.3 microM) and in addition, acquired affinity for Kv 1.1 channels (IC(50) =1 10.7+/-7.7 microM). kappa-KTx1.3 K20R failed to produce any blockade on the channel subtypes tested. These data suggest that the presence of an additional charged residue in a position adjacent to the dyad lysine impedes the functional block of Kv 1 channels produced by kappa-KTx1.3.


Asunto(s)
Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Venenos de Escorpión/farmacología , Toxinas Biológicas/farmacología , Secuencia de Aminoácidos , Disulfuros/química , Modelos Moleculares , Datos de Secuencia Molecular , Canales de Potasio con Entrada de Voltaje/química , Relación Estructura-Actividad
19.
Protein Sci ; 14(1): 169-75, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15576563

RESUMEN

Rhodocetin is a unique heterodimer consisting of alpha- and beta-subunits of 133 and 129 residues, respectively. The molecule, purified from the crude venom of the Malayan pit viper, Calloselasma rhodostoma, functions as an inhibitor of collagen-induced aggregation. Rhodocetin has been shown to have activity only when present as a dimer. The dimer is formed without an intersubunit disulfide bridge, unlike all the other Ca(2+)-dependent lectin-like proteins. We report here the 1.9 A resolution structure of rhodocetin, which reveals the compensatory interactions that occur in the absence of the disulfide bridge to preserve activity.


Asunto(s)
Venenos de Crotálidos/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica/fisiología , Conformación Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
20.
Artículo en Inglés | MEDLINE | ID: mdl-15578960

RESUMEN

Activation of prothrombin to mature thrombin in vivo occurs by the proteolytic action of the prothrombinase complex consisting of serine proteinase factor Xa, and cofactors that include factor Va, Ca(2+) ions and phospholipids. Several exogenous prothrombin activators are found in snake venom. Among these, Group C prothrombin activators resemble the factor Xa-factor Va complex, while Group D activators are structurally and functionally similar to factor Xa. This review provides a detailed description of current knowledge on Group D prothrombin activators and highlights the importance of studying this family of proteins in enhancing our understanding of structure-function relationships in the mammalian prothrombinase complex.


Asunto(s)
Anticoagulantes/farmacología , Factor Xa/química , Protrombina/agonistas , Venenos de Serpiente/química , Animales , Anticoagulantes/química , Activación Enzimática/efectos de los fármacos , Factor V/fisiología , Factor Xa/fisiología , Humanos , Conformación Proteica , Protrombina/antagonistas & inhibidores , Protrombina/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA