Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Nutr ; 10: 1190392, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37565037

RESUMEN

Introduction: In humans, adversity in childhood exerts enduring effects on brain and increases the vulnerability to psychiatric diseases. It also leads to a higher risk of eating disorders and obesity. Maternal separation (MS) in mice has been used as a proxy of stress during infancy. We hypothesized that MS in mice affects motivation to obtain palatable food in adulthood and changes gene expression in reward system. Methods: Male and female pups from C57Bl/6J and C3H/HeN mice strains were subjected to a daily MS protocol from postnatal day (PND) 2 to PND14. At adulthood, their motivation for palatable food reward was assessed in operant cages. Results: Compared to control mice, male and female C3H/HeN mice exposed to MS increased their instrumental response for palatable food, especially when the effort required to obtain the reward was high. Importantly, this effect is shown in animals fed ad libitum. Transcriptional analysis revealed 375 genes differentially expressed in the nucleus accumbens of male MS C3H/HeN mice compared to the control group, some of these being associated with the regulation of the reward system (e.g., Gnas, Pnoc). Interestingly, C57Bl/6J mice exposed to MS did not show alterations in their motivation to obtain a palatable reward, nor significant changes in gene expression in the nucleus accumbens. Conclusion: MS produces long-lasting changes in motivation for palatable food in C3H/HeN mice, but has no impact in C57Bl/6J mice. These behavioral alterations are accompanied by drastic changes in gene expression in the nucleus accumbens, a key structure in the regulation of motivational processes.

2.
Nutrients ; 12(6)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481497

RESUMEN

Nutritional changes during developmental windows are of particular concern in offspring metabolic disease. Questions are emerging concerning the role of maternal weight changes before conception, particularly for weight loss, in the development of diet-related disorders. Understanding the physiological pathways affected by the maternal trajectories in the offspring is therefore essential, but a broad overview is still lacking. We recently reported both metabolic and behavioral negative outcomes in offspring born to obese or weight-loss mothers and fed a control of high-fat diet, suggesting long-term modeling of metabolic pathways needing to be further characterized. Using non-targeted LC-HRMS, we investigated the impact of maternal and post-weaning metabolic status on the adult male offspring's metabolome in three tissues involved in energy homeostasis: liver, hypothalamus and olfactory bulb. We showed that post-weaning diet interfered with the abundance of several metabolites, including 1,5-anhydroglucitol, saccharopine and ßhydroxybutyrate, differential in the three tissues. Moreover, maternal diet had a unique impact on the abundance of two metabolites in the liver. Particularly, anserine abundance, lowered by maternal obesity, was normalized by a preconceptional weight loss, whatever the post-weaning diet. This study is the first to identify a programming long-term effect of maternal preconception obesity on the offspring metabolome.


Asunto(s)
Encéfalo/metabolismo , Dieta , Hígado/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Intercambio Materno-Fetal/fisiología , Metaboloma , Obesidad Materna/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Destete , Ácido 3-Hidroxibutírico/metabolismo , Animales , Anserina/metabolismo , Desoxiglucosa/metabolismo , Metabolismo Energético , Femenino , Homeostasis , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Ratones Endogámicos C57BL , Embarazo
3.
Nutrients ; 11(5)2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-31035463

RESUMEN

According to the "developmental origins of health and disease" (DOHaD) concept, maternal obesity predisposes the offspring to non-communicable diseases in adulthood. While a preconceptional weight loss (WL) is recommended for obese women, its benefits on the offspring have been poorly addressed. We evaluated whether preconceptional WL was able to reverse the adverse effects of maternal obesity in a mouse model, exhibiting a modification of foetal growth and of the expression of genes encoding epigenetic modifiers in liver and placenta. We tracked metabolic and olfactory behavioural trajectories of offspring born to control, obese or WL mothers. After weaning, the offspring were either put on a control diet (CD) or a high-fat (HFD). After only few weeks of HFD, the offspring developed obesity, metabolic alterations and olfactory impairments, independently of maternal context. However, male offspring born to obese mother gained even more weight under HFD than their counterparts born to lean mothers. Preconceptional WL normalized the offspring metabolic phenotypes but had unexpected effects on olfactory performance: a reduction in olfactory sensitivity, along with a lack of fasting-induced, olfactory-based motivation. Our results confirm the benefits of maternal preconceptional WL for male offspring metabolic health but highlight some possible adverse outcomes on olfactory-based behaviours.


Asunto(s)
Metabolismo Energético/fisiología , Obesidad/metabolismo , Olfato/fisiología , Pérdida de Peso , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Fertilización , Masculino , Ratones , Ratones Endogámicos C57BL , Madres , Embarazo
4.
Clin Epigenetics ; 8: 22, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26925174

RESUMEN

BACKGROUND: Maternal obesity impacts fetal growth and pregnancy outcomes. To counteract the deleterious effects of obesity on fertility and pregnancy issue, preconceptional weight loss is recommended to obese women. Whether this weight loss is beneficial/detrimental for offspring remains poorly explored. Epigenetic mechanisms could be affected by maternal weight changes, perturbing expression of key developmental genes in the placenta or fetus. Our aim was to investigate the effects of chronic maternal obesity on feto-placental growth along with the underlying epigenetic mechanisms. We also tested whether preconceptional weight loss could alleviate these effects. RESULTS: Female mice were fed either a control diet (CTRL group), a high-fat diet (obese (OB) group), or a high-fat diet switched to a control diet 2 months before conception (weight loss (WL) group). At mating, OB females presented an obese phenotype while WL females normalized metabolic parameters. At embryonic day 18.5 (E18.5), fetuses from OB females presented fetal growth restriction (FGR; -13 %) and 28 % of the fetuses were small for gestational age (SGA). Fetuses from WL females normalized this phenotype. The expression of 60 epigenetic machinery genes and 32 metabolic genes was measured in the fetal liver, placental labyrinth, and junctional zone. We revealed 23 genes altered by maternal weight trajectories in at least one of three tissues. The fetal liver and placental labyrinth were more responsive to maternal obesity than junctional zone. One third (18/60) of the epigenetic machinery genes were differentially expressed between at least two maternal groups. Interestingly, genes involved in the histone acetylation pathway were particularly altered (13/18). In OB group, lysine acetyltransferases and Bromodomain-containing protein 2 were upregulated, while most histone deacetylases were downregulated. In WL group, the expression of only a subset of these genes was normalized. CONCLUSIONS: This study highlights the high sensitivity of the epigenetic machinery gene expression, and particularly the histone acetylation pathway, to maternal obesity. These obesity-induced transcriptional changes could alter the placental and the hepatic epigenome, leading to FGR. Preconceptional weight loss appears beneficial to fetal growth, but some effects of previous obesity were retained in offspring phenotype.


Asunto(s)
Epigénesis Genética/genética , Desarrollo Fetal/genética , Obesidad/complicaciones , Complicaciones del Embarazo/genética , Pérdida de Peso/genética , Acetilación , Animales , Dieta Alta en Grasa/efectos adversos , Epigénesis Genética/fisiología , Femenino , Desarrollo Fetal/fisiología , Retardo del Crecimiento Fetal/etiología , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/fisiopatología , Expresión Génica/genética , Expresión Génica/fisiología , Histonas/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/fisiopatología , Placenta/metabolismo , Embarazo , Complicaciones del Embarazo/fisiopatología , Pérdida de Peso/fisiología
5.
Biol Aujourdhui ; 209(2): 175-87, 2015.
Artículo en Francés | MEDLINE | ID: mdl-26514387

RESUMEN

The environment, defined broadly by all that is external to the individual, conditions the phenotype during development, particularly the susceptibility to develop non-communicable diseases. This notion, called Developmental Origins of Health and Disease (DOHaD), is based on numerous epidemiological studies as well as animal models. Thus, parental nutrition and obesity can predispose the offspring to develop metabolic and cardiovascular diseases in adulthood. The known underlying mechanisms include an altered development of tissues that adapt to maternal metabolic condition, and a placental dysfunction, which in turn impacts fetal growth and development. Epigenetic mechanisms modulate gene expression without affecting the DNA sequence itself. The main epigenetic marks are DNA methylation and histone post-translational modifications. These marks are erased and set-up during gametogenesis and development in order to ensure cellular identity. Therefore, they can lead to a memorisation of early environment and induce long-term alteration of cell and tissue functions, which will condition the susceptibility to non-communicable diseases. The placenta is a programming agent of adult disease. The environment, such as smoking or psychosocial stress, is able to modify epigenetic processes in placenta, such as small RNA expression and DNA methylation. We showed that placenta is sensitive to maternal obesity and maternal nutrition, in terms of histology, transcription and epigenetic marks. A clear sexual dimorphism is remarkable in the placental response to maternal environment. In adulthood, the phenotype is also different between males and females. Epigenetic mechanisms could underlie this differential response of males and females to the same environment. The DOHaD can no longer be ignored in Biology of Reproduction. The prevention of non-communicable diseases must take this new paradigm into account. Research will allow a better comprehension of the mechanisms of this early conditioning and the marked sexual dimorphism it is associated to.


Asunto(s)
Desarrollo Embrionario , Epigénesis Genética , Fenómenos Fisiologicos Nutricionales Maternos , Placenta/fisiología , Adulto , Animales , Enfermedades Cardiovasculares/embriología , Enfermedades Cardiovasculares/fisiopatología , Metilación de ADN , Dieta Alta en Grasa/efectos adversos , Susceptibilidad a Enfermedades , Desarrollo Embrionario/genética , Femenino , Trastornos Nutricionales en el Feto/etiología , Trastornos Nutricionales en el Feto/prevención & control , Histonas/metabolismo , Humanos , Recién Nacido , Masculino , Desnutrición/fisiopatología , Síndrome Metabólico/embriología , Síndrome Metabólico/fisiopatología , Ratones , Modelos Biológicos , Obesidad/embriología , Obesidad/fisiopatología , Placenta/fisiopatología , Embarazo , Complicaciones del Embarazo/fisiopatología , Efectos Tardíos de la Exposición Prenatal , Fenómenos Fisiologicos de la Nutrición Prenatal , Procesamiento Proteico-Postraduccional , Conejos , Caracteres Sexuales
6.
Artículo en Inglés | MEDLINE | ID: mdl-25123062

RESUMEN

Specific mechanisms for maintaining docosahexaenoic acid (DHA) concentration in brain cells but also transporting DHA from the blood across the blood-brain barrier (BBB) are not agreed upon. Our main objective was therefore to evaluate the level of gene expression of fatty acid transport and fatty acid binding proteins in the cerebral cortex and at the BBB level during the perinatal period of active brain DHA accretion, at weaning, and until the adult age. We measured by real time RT-PCR the mRNA expression of different isoforms of fatty acid transport proteins (FATPs), long-chain acyl-CoA synthetases (ACSLs), fatty acid binding proteins (FABPs) and the fatty acid transporter (FAT)/CD36 in cerebral cortex and isolated microvessels at embryonic day 18 (E18) and postnatal days 14, 21 and 60 (P14, P21 and P60, respectively) in rats receiving different n-3 PUFA dietary supplies (control, totally deficient or DHA-supplemented). In control rats, all the genes were expressed at the BBB level (P14 to P60), the mRNA levels of FABP5 and ACSL3 having the highest values. Age-dependent differences included a systematic decrease in the mRNA expressions between P14-P21 and P60 (2 to 3-fold), with FABP7 mRNA abundance being the most affected (10-fold). In the cerebral cortex, mRNA levels varied differently since FATP4, ACSL3 and ACSL6 and the three FABPs genes were highly expressed. There were no significant differences in the expression of the 10 genes studied in n-3 deficient or DHA-supplemented rats despite significant differences in their brain DHA content, suggesting that brain DHA uptake from the blood does not necessarily require specific transporters within cerebral endothelial cells and could, under these experimental conditions, be a simple passive diffusion process.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Corteza Cerebral/metabolismo , Ácidos Docosahexaenoicos/genética , Proteínas de Transporte de Ácidos Grasos/biosíntesis , Proteínas de Unión a Ácidos Grasos/metabolismo , Animales , Barrera Hematoencefálica/crecimiento & desarrollo , Corteza Cerebral/crecimiento & desarrollo , Ácidos Docosahexaenoicos/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Proteínas de Transporte de Ácidos Grasos/genética , Proteínas de Transporte de Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/metabolismo , Regulación de la Expresión Génica , ARN Mensajero/biosíntesis , Ratas
7.
Artículo en Inglés | MEDLINE | ID: mdl-22579067

RESUMEN

n-3 Polyunsaturated fatty acids (PUFA) support whole brain energy metabolism but their impact on neuroenergetics in specific brain areas and during neuronal activation is still poorly understood. We tested the effect of feeding rats as control, n-3 PUFA-deficient diet, or docosahexaenoic acid (DHA)-supplemented diet on the expression of key genes in fronto-parietal cortex and hippocampal neuroenergetics before and after neuronal stimulation (activated) by an enriched environment. Compared to control rats, n-3 deficiency specifically repressed GLUT1 gene expression in the fronto-parietal cortex in basal state and also during neuronal activation which specifically stimulated GLUT1. In contrast, in the CA1 area, n-3 deficiency improved the glutamatergic synapse function in both neuronal states (glutamate transporters, Na(+)/K(+) ATPase). DHA supplementation induced overexpression of genes encoding enzymes of the oxidative phosphorylation system and the F1F0 ATP synthase in the CA1 area. We conclude that n-3 deficiency repressed GLUT1 gene expression in the cerebral cortex, while DHA supplementation improved the mitochondrial ATP generation in the CA1 area of the hippocampus.


Asunto(s)
Corteza Cerebral/metabolismo , Ácidos Grasos Omega-3/metabolismo , Transportador de Glucosa de Tipo 1/genética , Hipocampo/metabolismo , Neuronas/metabolismo , Lóbulo Parietal/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Femenino , Transportador de Glucosa de Tipo 1/metabolismo , Ratas , Ratas Wistar
8.
PLoS One ; 6(6): e20491, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21666750

RESUMEN

Omega-3 (ω3) polyunsaturated fatty acids (PUFA) are major components of brain cells membranes. ω3 PUFA-deficient rodents exhibit severe cognitive impairments (learning, memory) that have been linked to alteration of brain glucose utilization or to changes in neurotransmission processes. ω3 PUFA supplementation has been shown to lower anxiety and to improve several cognitive parameters in rodents, while very few data are available in primates. In humans, little is known about the association between anxiety and ω3 fatty acids supplementation and data are divergent about their impact on cognitive functions. Therefore, the development of nutritional studies in non-human primates is needed to disclose whether a long-term supplementation with long-chain ω3 PUFA has an impact on behavioural and cognitive parameters, differently or not from rodents. We address the hypothesis that ω3 PUFA supplementation could lower anxiety and improve cognitive performances of the Grey Mouse Lemur (Microcebus murinus), a nocturnal Malagasy prosimian primate. Adult male mouse lemurs were fed for 5 months on a control diet or on a diet supplemented with long-chain ω3 PUFA (n = 6 per group). Behavioural, cognitive and motor performances were measured using an open field test to evaluate anxiety, a circular platform test to evaluate reference spatial memory, a spontaneous locomotor activity monitoring and a sensory-motor test. ω3-supplemented animals exhibited lower anxiety level compared to control animals, what was accompanied by better performances in a reference spatial memory task (80% of successful trials vs 35% in controls, p<0.05), while the spontaneous locomotor activity was reduced by 31% in ω3-supplemented animals (p<0.001), a parameter that can be linked with lowered anxiety. The long-term dietary ω3 PUFA supplementation positively impacts on anxiety and cognitive performances in the adult mouse lemur. The supplementation of human food with ω3 fatty acids may represent a valuable dietary strategy to improve behavioural and cognitive functions.


Asunto(s)
Ansiedad/dietoterapia , Cheirogaleidae/fisiología , Cognición/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Aceites de Pescado/química , Actividad Motora/efectos de los fármacos , Animales , Ansiedad/fisiopatología , Cheirogaleidae/sangre , Ritmo Circadiano/efectos de los fármacos , Humanos , Lípidos/sangre , Masculino , Aprendizaje por Laberinto , Ratones , Prueba de Desempeño de Rotación con Aceleración Constante , Análisis y Desempeño de Tareas
9.
Neurochem Int ; 56(5): 703-10, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20153394

RESUMEN

Several in vivo studies suggest that docosahexaenoic acid (22:6 n-3), the main n-3 long-chain polyunsaturated fatty acids (LC-PUFA) of brain membranes, could be an important regulator of brain energy metabolism by affecting glucose utilization and the density of the two isoforms of the glucose transporter-1 (GLUT1) (endothelial and astrocytic). This study was conducted to test the hypothesis that 22:6 n-3 in membranes may modulate glucose metabolism in brain endothelial cells. It compared the impact of 22:6 n-3 and the other two main LC-PUFA, arachidonic acid (20:4 n-6) and eicosapentaenoic acid (20:5 n-3), on fatty acid composition of membrane phospholipids, glucose uptake and expression of 55-kDa GLUT1 isoform in two models of rat brain endothelial cells (RBEC), in primary culture and in the immortalized rat brain endothelial cell line RBE4. Without PUFA supplementation, both types of cerebral endothelial cells were depleted in 22:6 n-3, RBE4 being also particularly low in 20:4 n-6. After exposure to supplemental 20:4 n-6, 20:5 n-3 or 22:6 n-3 (15microM, i.e. a physiological dose), RBEC and RBE4 avidly incorporated these PUFA into their membrane phospholipids thereby resembling physiological conditions, i.e. the PUFA content of rat cerebral microvessels. However, RBE4 were unable to incorporate physiological level of 20:4 n-6. Basal glucose transport in RBEC (rate of [(3)H]-3-o-methylglucose uptake) was increased after 20:5 n-3 or 22:6 n-3 supplementation by 50% and 35%, respectively, whereas it was unchanged with 20:4 n-6. This increase of glucose transport was associated with an increased GLUT1 protein, while GLUT1 mRNA was not affected. The different PUFA did not impact on glucose uptake in RBE4. Due to alterations in n-6 PUFA metabolism and weak expression of GLUT1, RBE4 seems to be less adequate than RBEC to study PUFA metabolism and glucose transport in brain endothelial cells. Physiological doses of n-3 LC-PUFA have a direct and positive effect on glucose transport and GLUT1 density in RBEC that could partly explain decreased brain glucose utilization in n-3 PUFA-deprived rats.


Asunto(s)
Química Encefálica/efectos de los fármacos , Células Endoteliales/metabolismo , Ácidos Grasos Omega-3/farmacología , Glucosa/metabolismo , 3-O-Metilglucosa/metabolismo , Animales , Western Blotting , Capilares/citología , Capilares/efectos de los fármacos , Capilares/metabolismo , Células Cultivadas , Cartilla de ADN , ADN Complementario/biosíntesis , ADN Complementario/genética , Células Endoteliales/efectos de los fármacos , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Transportador de Glucosa de Tipo 1/biosíntesis , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 3/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Masculino , Ratas , Ratas Wistar
10.
J Nutr ; 135(9): 2241-6, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16140905

RESUMEN

The altered neuron activity of rats deficient in (n-3) PUFAs may be due in part to a decrease in brain glucose utilization and glucose transport. We measured the glucose transporter protein GLUT1 isoforms at the blood-brain barrier (55-kDa) and in astrocytes (45-kDa) by Western immunoblotting and their mRNA by real time RT-PCR analysis in the cerebral cortex of adult male rats fed diets lacking (n-3) fatty acids (1st generation). The neuron glucose transporter GLUT3 was also assayed. The fatty acids in the phosphatidylcholine (PC), ethanolamine phosphoglycerolipid (EPG), and phosphatidylserine (PS) fractions of isolated microvessels and homogenates of the cerebral cortex were determined. The levels of (n-6) PUFAs [mainly arachidonic acid, 20:4(n-6)] in the phospholipid fractions of microvessels were higher and the levels of (n-3) PUFAs [mainly docosahexaenoic acid, 22:6(n-3)] were lower than in cerebral cortex homogenates. The microvessels and cortex of rats fed the (n-3) PUFA-deficient diet had 50% of the control 22:6(n-3) contents; 22:6(n-3) was replaced by 22:5(n-6). The 55-kDa GLUT1 immunoreactivity in (n-3) PUFA-deficient microvessels was decreased (down 25%, P < 0.01), as was the 45 kDa-GLUT1 in the homogenate (down 30%, P < 0.01). But the amount of immunoreactivity of GLUT3 did not change. The amount of GLUT1 mRNA was not affected by the (n-3) PUFA-deficient diet. These results suggest that the decreased glucose utilization in the cerebral cortex of (n-3) PUFA-deficient rats is due to reduced amounts of the 2 isoforms of GLUT1, indicating post-transcriptional regulation of GLUT1 synthesis.


Asunto(s)
Encéfalo/metabolismo , Ácidos Grasos Omega-3/metabolismo , Animales , Vasos Sanguíneos/metabolismo , Corteza Cerebral/irrigación sanguínea , Técnicas In Vitro , Metabolismo de los Lípidos , Masculino , Microcirculación , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Ratas
11.
Am J Pathol ; 163(4): 1633-44, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14507670

RESUMEN

Collagen IV is a major structural component of basement membranes. In the glomerular basement membrane (GBM) of the kidney, the alpha3, alpha4, and alpha5(IV) collagen chains form a distinct network that is essential for the long-term stability of the glomerular filtration barrier, and is absent in most patients affected with Alport syndrome, a progressive inherited nephropathy associated with mutation in COL4A3, COL4A4, or COL4A5 genes. To investigate, in vivo, the regulation of the expression, assembly, and function of the alpha3alpha4alpha5(IV) protomer, we have generated a yeast artificial chromosome transgenic line of mice carrying the human COL4A3-COL4A4 locus. Transgenic mice expressed the human alpha3 and alpha4(IV) chains in a tissue-specific manner. In the kidney, when expressed onto a Col4a3(-/-) background, the human alpha3(IV) chain restored the expression of and co-assembled with the mouse alpha4 and alpha5(IV) chains specifically at sites where the human alpha3(IV) was expressed, demonstrating that the expression of all three chains is required for network assembly. The co-assembly of the human and mouse chains into a hybrid network in the GBM restores a functional GBM and rescues the Alport phenotype, providing further evidence that defective assembly of the alpha3-alpha4-alpha5(IV) protomer, caused by mutations in any of the three chains, is the pathogenic mechanism responsible for the disease. This line of mice, humanized for the alpha3(IV) collagen chain, will also provide a valuable model for studying the pathogenesis of Goodpasture syndrome, an autoimmune disease caused by antibodies against this chain.


Asunto(s)
Autoantígenos/genética , Quimera , Colágeno Tipo IV/genética , Riñón/fisiopatología , Nefritis Hereditaria/genética , Animales , Autoanticuerpos/metabolismo , Autoantígenos/inmunología , Membrana Basal/metabolismo , Colágeno Tipo IV/inmunología , Colágeno Tipo IV/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Riñón/metabolismo , Riñón/patología , Ratones , Ratones Noqueados , Ratones Transgénicos , Nefritis Hereditaria/metabolismo , Nefritis Hereditaria/patología , Fenotipo , Isoformas de Proteínas/metabolismo , Subunidades de Proteína/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA