Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Microbiol ; 13: 841841, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35369517

RESUMEN

Yersinia enterocolitica is a psychrotrophic zoonotic foodborne pathogen. Pigs are considered the main reservoir of Y. enterocolitica 4/O:3, which is the most commonly isolated bioserotype in many European countries. Consuming pork contaminated with Y. enterocolitica can be a health threat, and antimicrobial-resistant strains may complicate the treatment of the most severe forms of yersiniosis. We analyzed the antimicrobial resistance of 1,016 pathogenic porcine Y. enterocolitica 4/O:3 strains originating from Belgium, Estonia, Finland, Germany, Italy, Latvia, Russia, Spain, and the United Kingdom. Based on available reports, we also compared antimicrobial sales for food production animals in these countries, excluding Russia. Antimicrobial resistance profiles were determined using a broth microdilution method with VetMIC plates for 13 antimicrobial agents: ampicillin, cefotaxime, ceftiofur (CTF), chloramphenicol (CHL), ciprofloxacin, florfenicol, gentamicin, kanamycin, nalidixic acid (NAL), streptomycin (STR), sulfamethoxazole (SME), tetracycline (TET), and trimethoprim (TMP). The antimicrobial resistance of Y. enterocolitica 4/O:3 strains varied widely between the countries. Strains resistant to antimicrobial agents other than ampicillin were rare in Estonia, Finland, Latvia, and Russia, with prevalence of 0.7, 0.4, 0, and 8.3%, respectively. The highest prevalence of antimicrobial resistance was found in Spanish and Italian strains, with 98 and 61% of the strains being resistant to at least two antimicrobial agents, respectively. Resistance to at least four antimicrobial agents was found in 34% of Spanish, 19% of Italian, and 7.1% of English strains. Antimicrobial resistance was more common in countries where the total sales of antimicrobials for food production animals are high and orally administered medications are common. Our results indicate that antimicrobials should be used responsibly to treat infections, and parenteral medications should be preferred to orally administered mass medications.

2.
Prev Vet Med ; 193: 105408, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34130225

RESUMEN

We investigated connections between antimicrobial use (AMU), biosecurity, and the numbers of pigs and staff in ten Finnish farrow-to-finish herds. Data on AMU in each herd were collected for 12 months. AMU was quantified as treatment incidences per 1000 days at risk (TI) using the consensus defined daily dose calculation. Biosecurity was scored using the Biocheck.UGent™ system. We also examined antimicrobial resistance patterns of indicator E. coli isolated from faeces of selected pigs. In each herd, two groups of five pigs were formed: 1) antimicrobial treatment group (ANT: at least one pig in the litter was identified as sick and treated with antimicrobials) and 2) non-antimicrobial treatment group (NON: the litter was not medicated). Faecal samples were taken from these pigs at 5 and 22 weeks of age, cultured, and indicator E. coli isolates were tested for antimicrobial susceptibilities. The AMU varied considerably between the herds. Altogether, most of the antimicrobial treatment courses were assigned to weaned piglets. When AMU was quantified as TIs, suckling piglets had the highest TI (mean 46.6), which was significantly higher (P < 0.05) than TIs in fatteners and breeders (9.3 and 7.3, respectively). The difference between TI in suckling and TI in weaned piglets (19.1) was not statistically significant. There was a tendency for a negative correlation between the TI in breeders and the number of sows (r = -0.56, P = 0.09). Larger herds had higher external biosecurity scores than smaller herds (LS-means; 72 vs. 66, P < 0.05). The proportions of E. coli isolates resistant to at least one antimicrobial were higher in pigs at 5 weeks than in pigs at 22 weeks of age (Binomial proportion means; 40.5 % vs. 15.5 %, P < 0.05); as well as proportions of isolates resistant to at least three antimicrobial classes (23.0 % vs. 3.7 %, P < 0.01). These proportions did not differ between the ANT and NON groups at either 5 or 22 weeks of age (P> 0.05). We found few connections: enhanced external biosecurity levels found in the large herds co-occurred with lower use of antimicrobials and herds with low biosecurity scores - especially in the internal subcategories - appeared to have higher proportions of resistant isolates. Conclusively, we suggest that enhancing internal biosecurity might contribute to a reduction in the spreading of antimicrobial resistance in pig herds.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Animales , Antibacterianos/uso terapéutico , Granjas , Femenino , Finlandia/epidemiología , Porcinos
3.
Vet Microbiol ; 247: 108798, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32768239

RESUMEN

Yersinia enterocolitica is the most common Yersinia species causing foodborne infections in humans. Pathogenic strains carry the chromosomal ail gene, which is essential for bacterial attachment to and invasion into host cells and for serum resistance. This gene is commonly amplified in several PCR assays detecting pathogenic Y. enterocolitica in food samples and discriminating pathogenic isolates from non-pathogenic ones. We have isolated several non-pathogenic ail-positive Yersinia strains from various sources in Finland. For this study, we selected 16 ail-positive Yersinia strains, which were phenotypically and genotypically characterised. Eleven strains were confirmed to belong to Y. enterocolitica and five strains to Yersinia kristensenii using whole-genome alignment, Parsnp and the SNP phylogenetic tree. All Y. enterocolitica strains belonged to non-pathogenic biotype 1A. We found two copies of the ail gene (ail1 and ail2) in all five Y. kristensenii strains and in one Y. enterocolitica biotype 1A strain. All 16 Yersinia strains carried the ail1 gene consisting of three different sequence patterns (A6-A8), which were highly similar with the ail gene found in high-pathogenic Y. enterocolitica biotype 1B strains (A2). The Ail protein encoded by the ail1 gene was highly conserved compared to the Ail protein encoded by the ail2 gene. Multiple sequence alignment of the ail gene and Ail protein were conducted with MAFF. In total, 10 ail sequence variations have been identified, of which 8 conserved ones belonged to the ail1 gene. According to our results, the detection of ail alone is not sufficient to predict the pathogenicity of Yersinia isolates.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Dosificación de Gen , Yersiniosis/veterinaria , Yersinia enterocolitica/genética , Yersinia/genética , Animales , Finlandia , Genoma Bacteriano , Genotipo , Humanos , Filogenia , Secuenciación Completa del Genoma , Yersinia/patogenicidad , Yersiniosis/microbiología , Yersinia enterocolitica/patogenicidad
4.
Vector Borne Zoonotic Dis ; 17(5): 303-311, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28332937

RESUMEN

Yersinia enterocolitica and Yersinia pseudotuberculosis are important zoonotic bacteria causing human enteric yersiniosis commonly reported in Europe. All Y. pseudotuberculosis strains are considered pathogenic, while Y. enterocolitica include both pathogenic and nonpathogenic strains which can be divided into six biotypes (1A, 1B, and 2-5) and about 30 serotypes. The most common types causing yersiniosis in Europe are Y. enterocolitica bioserotypes 4/O:3 and 2/O:9. Strains belonging to biotype 1A are considered as nonpathogenic because they are missing important virulence genes like the attachment-invasion-locus (ail) gene in the chromosome and the virulence plasmid. The role of wild small mammals as a reservoir of enteropathogenic Yersinia spp. is still obscure. In this study, the presence of Yersinia spp. was examined from 1840 wild small mammals, including voles, mice, and shrews, trapped in Finland during a 7-year period. We isolated seven Yersinia species. Y. enterocolitica was the most common species, isolated from 8% of the animals; while most of these isolates represented nonpathogenic biotype 1A, human pathogenic bioserotype 2/O:9 was also isolated from a field vole. Y. pseudotuberculosis of bioserotype 1/O:2 was isolated from two shrews. The ail gene, which is typically only found in the isolates of biotypes 1B and 2-5 associated with yersiniosis, was frequently (23%) detected in the nonpathogenic isolates of biotype 1A and sporadically (6%) in Yersinia kristensenii isolates. Our results suggest that wild small mammals, especially voles, may serve as carriers for ail-positive Y. enterocolitica 1A and Y. kristensenii. We also demonstrate that voles and shrews sporadically excrete pYV-positive Y. enterocolitica 2/O:9 and Y. pseudotuberculosis 1/O:2, respectively, in their feces and, thus, can serve as a contamination source for vegetables by contaminating the soil.


Asunto(s)
Animales Salvajes , Enfermedades de los Roedores/microbiología , Roedores , Musarañas/microbiología , Yersiniosis/veterinaria , Yersinia/aislamiento & purificación , Animales , Finlandia/epidemiología , Enfermedades de los Roedores/epidemiología , Especificidad de la Especie , Yersinia/clasificación , Yersiniosis/epidemiología , Yersiniosis/microbiología
5.
Vet Microbiol ; 197: 78-82, 2016 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-27938687

RESUMEN

Yersinia enterocolitica is a heterogeneous species including non-pathogenic strains belonging to biotype 1A and pathogenic strains belonging to biotypes 1B and 2-5. Pathogenic strains of biotypes 2-4 carrying the ail virulence gene have frequently been isolated from domestic pigs at slaughter. In sheep, mostly non-pathogenic biotype 1A strains have been reported. In our study, the prevalence of ail-positive Y. enterocolitica was studied by PCR and culturing in 406 young sheep (<1year of age) and 139 older sheep at slaughter in Finland. When using PCR, the detection rate was 11% (45/406) in young sheep originating from 11 (18%) farms. Surprisingly, Y. enterocolitica belonging to bioserotypes 2/O:9 and 5/O:3, carrying both chromosomal and plasmid-borne virulence genes, were isolated from the fecal samples of 10 (2%) and 23 (4%) sheep, respectively. All isolates of bioserotypes 2/O:9 (19 isolates) and 5/O:3 (53 isolates) carried the chromosomal virulence genes ail, inv, ystA, and myfA, and almost all isolates (71/72) also carried the virulence genes virF and yadA located on the virulence plasmid. The isolates showed high susceptibility to tested antimicrobials and low genetic diversity by PFGE. Y. enterocolitica bioserotype 5/O:3 is a very rare bioserotype, and has earlier only sporadically been reported in European wildlife and in sheep in Australia and New Zealand. Bioserotype 2/O:9 is a common bioserotype found in humans with yersiniosis, and has sporadically been isolated in wild and domestic animals.


Asunto(s)
Heces/microbiología , Serogrupo , Enfermedades de las Ovejas/microbiología , Yersiniosis/veterinaria , Yersinia enterocolitica , Animales , Portador Sano , Ovinos , Yersiniosis/microbiología , Yersinia enterocolitica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA