Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Development ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373366

RESUMEN

For investigations into fate specification and morphogenesis in time-lapse images of preimplantation embryos, automated 3D instance segmentation and tracking of nuclei are invaluable. Low signal-to-noise ratio, high voxel anisotropy, high nuclear density, and variable nuclear shapes can limit the performance of segmentation methods, while tracking is complicated by cell divisions, low frame rates, and sample movements. Supervised machine learning approaches can radically improve segmentation accuracy and enable easier tracking, but they often require large amounts of annotated 3D data. Here we first report a novel mouse line expressing near-infrared nuclear reporter H2B-miRFP720. We then generate a dataset (termed BlastoSPIM) of 3D images of H2B-miRFP720-expressing embryos with ground truth for nuclear instances. Using BlastoSPIM, we benchmark seven convolutional neural networks and identify Stardist-3D as the most accurate instance segmentation method. With our BlastoSPIM-trained Stardist-3D models, we construct a complete pipeline for nuclear instance segmentation and lineage tracking from the 8-cell stage to the end of preimplantation development (>100 nuclei). Finally, we demonstrate BlastoSPIM's usefulness as pre-train data for related problems, both for a different imaging modality and for different model systems.

2.
Nat Biotechnol ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321114

RESUMEN

Using transient inhibition of DNA mismatch repair during a permissive stage of development, we demonstrate highly efficient prime editing of mouse embryos with few unwanted, local byproducts (average 58% precise edit frequency, 0.5% on-target error frequency across 13 substitution edits at 8 sites), enabling same-generation phenotyping of founders. Whole-genome sequencing reveals that mismatch repair inhibition increases off-target indels at low-complexity regions in the genome without any obvious phenotype in mice.

3.
J Cell Biol ; 223(2)2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38051393

RESUMEN

Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate the traffic of cells and molecules between compartments, and participate in signaling, cell migration, and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labeled. Here, we describe the mTurquoise2-Col4a1 mouse in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative planar-sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.


Asunto(s)
Membrana Basal , Colágeno Tipo IV , Matriz Extracelular , Animales , Ratones , Membrana Basal/crecimiento & desarrollo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Matriz Extracelular/metabolismo , Colorantes Fluorescentes , Folículo Piloso/crecimiento & desarrollo , Células Madre
4.
bioRxiv ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37808687

RESUMEN

Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate traffic of cells and molecules between compartments, and participate in signaling, cell migration and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labelled. Here, we describe the mTurquoise2-Col4a1 mouse, in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative Planar-Sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.

5.
bioRxiv ; 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36993260

RESUMEN

For investigations into fate specification and cell rearrangements in live images of preimplantation embryos, automated and accurate 3D instance segmentation of nuclei is invaluable; however, the performance of segmentation methods is limited by the images' low signal-to-noise ratio and high voxel anisotropy and the nuclei's dense packing and variable shapes. Supervised machine learning approaches have the potential to radically improve segmentation accuracy but are hampered by a lack of fully annotated 3D data. In this work, we first establish a novel mouse line expressing near-infrared nuclear reporter H2B-miRFP720. H2B-miRFP720 is the longest wavelength nuclear reporter in mice and can be imaged simultaneously with other reporters with minimal overlap. We then generate a dataset, which we call BlastoSPIM, of 3D microscopy images of H2B-miRFP720-expressing embryos with ground truth for nuclear instance segmentation. Using BlastoSPIM, we benchmark the performance of five convolutional neural networks and identify Stardist-3D as the most accurate instance segmentation method across preimplantation development. Stardist-3D, trained on BlastoSPIM, performs robustly up to the end of preimplantation development (> 100 nuclei) and enables studies of fate patterning in the late blastocyst. We, then, demonstrate BlastoSPIM's usefulness as pre-train data for related problems. BlastoSPIM and its corresponding Stardist-3D models are available at: blastospim.flatironinstitute.org.

6.
Elife ; 82019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31187731

RESUMEN

The control of cell fate through oriented cell division is imperative for proper organ development. Basal epidermal progenitor cells divide parallel or perpendicular to the basement membrane to self-renew or produce differentiated stratified layers, but the mechanisms regulating the choice between division orientations are unknown. Using time-lapse imaging to follow divisions and fates of basal progenitors, we find that mouse embryos defective for the planar cell polarity (PCP) gene, Vangl2, exhibit increased perpendicular divisions and hyperthickened epidermis. Surprisingly, this is not due to defective Vangl2 function in the epidermis, but to changes in cell geometry and packing that arise from the open neural tube characteristic of PCP mutants. Through regional variations in epidermal deformation and physical manipulations, we show that local tissue architecture, rather than cortical PCP cues, regulates the decision between symmetric and stratifying divisions, allowing flexibility for basal cells to adapt to the needs of the developing tissue.


Asunto(s)
Epidermis/embriología , Epitelio/anatomía & histología , Mamíferos/embriología , Huso Acromático/metabolismo , Células Madre/citología , Animales , División Celular , Linaje de la Célula , Polaridad Celular , Forma de la Célula , Embrión de Mamíferos/metabolismo , Células Epidérmicas/citología , Ratones Endogámicos C57BL , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Tubo Neural/patología
7.
Nat Cell Biol ; 20(5): 541-552, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29662173

RESUMEN

Organ morphogenesis is a complex process coordinated by cell specification, epithelial-mesenchymal interactions and tissue polarity. A striking example is the pattern of regularly spaced, globally aligned mammalian hair follicles, which emerges through epidermal-dermal signaling and planar polarized morphogenesis. Here, using live-imaging, we discover that developing hair follicles polarize through dramatic cell rearrangements organized in a counter-rotational pattern of cell flows. Upon hair placode induction, Shh signaling specifies a radial pattern of progenitor fates that, together with planar cell polarity, induce counter-rotational rearrangements through myosin and ROCK-dependent polarized neighbour exchanges. Importantly, these cell rearrangements also establish cell fate asymmetry by repositioning radial progenitors along the anterior-posterior axis. These movements concurrently displace associated mesenchymal cells, which then signal asymmetrically to maintain polarized cell fates. Our results demonstrate how spatial patterning and tissue polarity generate an unexpected collective cell behaviour that in turn, establishes both morphological and cell fate asymmetry.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Polaridad Celular , Forma de la Célula , Folículo Piloso/fisiología , Morfogénesis , Células Madre/fisiología , Animales , Comunicación Celular , Línea Celular , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Femenino , Edad Gestacional , Folículo Piloso/embriología , Folículo Piloso/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Masculino , Mecanotransducción Celular , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones Endogámicos C57BL , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Células Madre/metabolismo , Factores de Tiempo , Técnicas de Cultivo de Tejidos , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
8.
Curr Biol ; 26(16): 2090-100, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27451904

RESUMEN

Planar cell polarity (PCP) refers to the collective alignment of polarity along the tissue plane. In skin, the largest mammalian organ, PCP aligns over extremely long distances, but the global cues that orient tissue polarity are unknown. Here, we show that Celsr1 asymmetry arises concomitant with a gradient of tissue deformation oriented along the medial-lateral axis. This uniaxial tissue tension, whose origin remains unknown, transiently transforms basal epithelial cells from initially isotropic and disordered states into highly elongated and aligned morphologies. Reorienting tissue deformation is sufficient to shift the global axis of polarity, suggesting that uniaxial tissue strain can act as a long-range polarizing cue. Observations both in vivo and in vitro suggest that the effect of tissue anisotropy on Celsr1 polarity is not a direct consequence of cell shape but rather reflects the restructuring of cell-cell interfaces during oriented cell divisions and cell rearrangements that serve to relax tissue strain. We demonstrate that cell intercalations remodel intercellular junctions predominantly between the mediolateral interfaces of neighboring cells. This restructuring of the cell surface polarizes Celsr1, which is slow to accumulate at nascent junctions yet stably associates with persistent junctions. We propose that tissue anisotropy globally aligns Celsr1 polarity by creating a directional bias in the formation of new cell interfaces while simultaneously aligning the persistent interfaces at which Celsr1 prefers to accumulate.


Asunto(s)
Polaridad Celular , Uniones Intercelulares/metabolismo , Morfogénesis , Piel/embriología , Animales , Cadherinas/genética , Cadherinas/metabolismo , Células Epiteliales/metabolismo , Ratones , Piel/metabolismo
9.
Front Cell Neurosci ; 7: 202, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24312004

RESUMEN

Within the nervous system, intracellular Cl(-) and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission, and network excitability. Cl(-) and pH are often co-regulated, and network activity results in the movement of both Cl(-) and H(+). Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl(-) and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN-a new genetically-encoded ratiometric Cl(-) and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl(-) and H(+) concentrations under a variety of conditions. In addition, we establish the sensor's utility by characterizing activity-dependent ion dynamics in hippocampal neurons.

10.
Eukaryot Cell ; 12(7): 979-89, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23666622

RESUMEN

The unfolded protein response (UPR) is an important regulatory network that responds to perturbations in protein homeostasis in the endoplasmic reticulum (ER). In mammalian cells, the UPR features translational and transcriptional mechanisms of gene expression aimed at restoring proteostatic control. A central feature of the UPR is phosphorylation of the α subunit of eukaryotic initiation factor-2 (eIF2) by PERK (EIF2AK3/PEK), which reduces the influx of nascent proteins into the ER by lowering global protein synthesis, coincident with preferential translation of key transcription activators of genes that function to expand the processing capacity of this secretory organelle. Upon ER stress, the apicomplexan parasite Toxoplasma gondii is known to induce phosphorylation of Toxoplasma eIF2α and lower translation initiation. To characterize the nature of the ensuing UPR in this parasite, we carried out microarray analyses to measure the changes in the transcriptome and in translational control during ER stress. We determined that a collection of transcripts linked with the secretory process are induced in response to ER stress, supporting the idea that a transcriptional induction phase of the UPR occurs in Toxoplasma. Furthermore, we determined that about 500 gene transcripts showed enhanced association with translating ribosomes during ER stress. Many of these target genes are suggested to be involved in gene expression, including JmjC5, which continues to be actively translated during ER stress. This study indicates that Toxoplasma triggers a UPR during ER stress that features both translational and transcriptional regulatory mechanisms, which is likely to be important for parasite invasion and development.


Asunto(s)
Regulación de la Expresión Génica , Biosíntesis de Proteínas/genética , Toxoplasma/genética , Toxoplasma/metabolismo , Transcripción Genética , Respuesta de Proteína Desplegada/genética , Animales , Secuencia de Bases , Biología Computacional , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Regulación de la Expresión Génica/efectos de los fármacos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Datos de Secuencia Molecular , Parásitos/efectos de los fármacos , Parásitos/genética , Parásitos/metabolismo , Polirribosomas/efectos de los fármacos , Polirribosomas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Estructura Terciaria de Proteína , Proteínas Protozoarias/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Toxoplasma/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Tunicamicina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , eIF-2 Quinasa/química , eIF-2 Quinasa/metabolismo
11.
Eukaryot Cell ; 12(2): 161-7, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23243065

RESUMEN

The life cycles of apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii are complex, consisting of proliferative and latent stages within multiple hosts. Dramatic transformations take place during the cycles, and they demand precise control of gene expression at all levels, including translation. This review focuses on the mechanisms that regulate translational control in Plasmodium and Toxoplasma, with a particular emphasis on the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of eIF2α (eIF2α∼P) is a conserved mechanism that eukaryotic cells use to repress global protein synthesis while enhancing gene-specific translation of a subset of mRNAs. Elevated levels of eIF2α∼P have been observed during latent stages in both Toxoplasma and Plasmodium, indicating that translational control plays a role in maintaining dormancy. Parasite-specific eIF2α kinases and phosphatases are also required for proper developmental transitions and adaptation to cellular stresses encountered during the life cycle. Identification of small-molecule inhibitors of apicomplexan eIF2α kinases may selectively interfere with parasite translational control and lead to the development of new therapies to treat malaria and toxoplasmosis.


Asunto(s)
Plasmodium/genética , Biosíntesis de Proteínas , Toxoplasma/genética , Animales , Factor 2 Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica , Interacciones Huésped-Parásitos , Humanos , Malaria/parasitología , Fosforilación , Plasmodium/metabolismo , Plasmodium/fisiología , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo , Esporozoítos/fisiología , Toxoplasma/metabolismo , Toxoplasma/fisiología , Toxoplasmosis/parasitología
13.
PLoS Biol ; 10(2): e1001256, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22346733

RESUMEN

The visceral endoderm (VE) is a simple epithelium that forms the outer layer of the egg-cylinder stage mouse embryo. The anterior visceral endoderm (AVE), a specialised subset of VE cells, is responsible for specifying anterior pattern. AVE cells show a stereotypic migratory behaviour within the VE, which is responsible for correctly orientating the anterior-posterior axis. The epithelial integrity of the VE is maintained during the course of AVE migration, which takes place by intercalation of AVE and other VE cells. Though a continuous epithelial sheet, the VE is characterised by two regions of dramatically different behaviour, one showing robust cell movement and intercalation (in which the AVE migrates) and one that is static, with relatively little cell movement and mixing. Little is known about the cellular rearrangements that accommodate and influence the sustained directional movement of subsets of cells (such as the AVE) within epithelia like the VE. This study uses an interdisciplinary approach to further our understanding of cell movement in epithelia. Using both wild-type embryos as well as mutants in which AVE migration is abnormal or arrested, we show that AVE migration is specifically linked to changes in cell packing in the VE and an increase in multi-cellular rosette arrangements (five or more cells meeting at a point). To probe the role of rosettes during AVE migration, we develop a mathematical model of cell movement in the VE. To do this, we use a vertex-based model, implemented on an ellipsoidal surface to represent a realistic geometry for the mouse egg-cylinder. The potential for rosette formation is included, along with various junctional rearrangements. Simulations suggest that while rosettes are not essential for AVE migration, they are crucial for the orderliness of this migration observed in embryos. Our simulations are similar to results from transgenic embryos in which Planar Cell Polarity (PCP) signalling is disrupted. Such embryos have significantly reduced rosette numbers, altered epithelial packing, and show abnormalities in AVE migration. Our results show that the formation of multi-cellular rosettes in the mouse VE is dependent on normal PCP signalling. Taken together, our model and experimental observations suggest that rosettes in the VE epithelium do not form passively in response to AVE migration. Instead, they are a PCP-dependent arrangement of cells that acts to buffer the disequilibrium in cell packing generated in the VE by AVE migration, enabling AVE cells to migrate in an orderly manner.


Asunto(s)
Movimiento Celular , Endodermo/citología , Células Epiteliales/fisiología , Algoritmos , Animales , Polaridad Celular , Simulación por Computador , Técnicas de Cultivo de Embriones , Embrión de Mamíferos/citología , Células Epiteliales/citología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Microscopía de Polarización , Modelos Biológicos , Imagen de Lapso de Tiempo
14.
PLoS Biol ; 9(2): e1001019, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21364967

RESUMEN

The anterior visceral endoderm (AVE), a signalling centre within the simple epithelium of the visceral endoderm (VE), is required for anterior-posterior axis specification in the mouse embryo. AVE cells migrate directionally within the VE, thereby properly positioning the future anterior of the embryo and orientating the primary body axis. AVE cells consistently come to an abrupt stop at the border between the anterior epiblast and extra-embryonic ectoderm, which represents an end-point to their proximal migration. Little is known about the underlying basis for this barrier and how surrounding cells in the VE respond to or influence AVE migration. We use high-resolution 3D reconstructions of protein localisation patterns and time-lapse microscopy to show that AVE cells move by exchanging neighbours within an intact epithelium. Cell movement and mixing is restricted to the VE overlying the epiblast, characterised by the enrichment of Dishevelled-2 (Dvl2) to the lateral plasma membrane, a hallmark of Planar Cell Polarity (PCP) signalling. AVE cells halt upon reaching the adjoining region of VE overlying the extra-embryonic ectoderm, which displays reduced neighbour exchange and in which Dvl2 is excluded specifically from the plasma membrane. Though a single continuous sheet, these two regions of VE show distinct patterns of F-actin localisation, in cortical rings and an apical shroud, respectively. We genetically perturb PCP signalling and show that this disrupts the localisation pattern of Dvl2 and F-actin and the normal migration of AVE cells. In Nodal null embryos, membrane localisation of Dvl2 is reduced, while in mutants for the Nodal inhibitor Lefty1, Dvl2 is ectopically membrane localised, establishing a role for Nodal in modulating PCP signalling. These results show that the limits of AVE migration are determined by regional differences in cell behaviour and protein localisation within an otherwise apparently uniform VE. In addition to coordinating global cell movements across epithelia (such as during convergence extension), PCP signalling in interplay with TGFß signalling can demarcate regions of differing behaviour within epithelia, thereby modulating the movement of cells within them.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Endodermo/citología , Endodermo/metabolismo , Proteína Nodal/metabolismo , Fosfoproteínas/metabolismo , Vísceras/citología , Actinas/metabolismo , Animales , Cadherinas/metabolismo , Movimiento Celular , Polaridad Celular , Forma de la Célula , Proteínas Dishevelled , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Epitelio/metabolismo , Factores de Determinación Derecha-Izquierda/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Modelos Biológicos , Miosina Tipo IIA no Muscular/metabolismo , Transporte de Proteínas , Transducción de Señal , Vísceras/embriología , Proteína de la Zonula Occludens-1
16.
Proc Natl Acad Sci U S A ; 107(40): 17200-5, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20855600

RESUMEN

While seeking a new host cell, obligate intracellular parasites, such as the protozoan Toxoplasma gondii, must be able to endure the stress of an extracellular environment. The mechanisms Toxoplasma use to remain viable while deprived of a host cell are not understood. We have previously shown that phosphorylation of Toxoplasma eukaryotic initiation factor-2α (TgIF2α) is a conserved response to stress. Here we report the characterization of Toxoplasma harboring a point mutation (S71A) in TgIF2α that prevents phosphorylation. Results show that TgIF2α phosphorylation is critical for parasite viability because the TgIF2α-S71A mutants are ill-equipped to cope with life outside the host cell. The TgIF2α-S71A mutants also showed a significant delay in producing acute toxoplasmosis in vivo. We conclude that the phosphorylation of TgIF2α plays a crucial role during the lytic cycle by ameliorating the stress of the extracellular environment while the parasite searches for a new host cell.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/fisiología , Adaptación Fisiológica , Animales , Animales Modificados Genéticamente , Factor 2 Eucariótico de Iniciación/genética , Femenino , Interacciones Huésped-Parásitos/fisiología , Ratones , Ratones Endogámicos BALB C , Mutación , Fosforilación , Proteínas Protozoarias/genética , Toxoplasma/citología , Toxoplasma/patogenicidad , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología
17.
Dev Dyn ; 239(7): 1988-94, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20549734

RESUMEN

Deletion of the transcriptional modulator Cited2 in the mouse results in embryonic lethality, cardiovascular malformations, adrenal agenesis, cranial ganglia fusion, exencephaly, and left-right patterning defects, all seen with a varying degree of penetrance. The phenotypic heterogeneity, observed on different genetic backgrounds, indicates the existence of both genetic and environmental modifiers. Mice lacking the LIM domain-containing protein Lmo4 share specific phenotypes with Cited2 null embryos, such as embryonic lethality, cranial ganglia fusion, and exencephaly. These shared phenotypes suggested that Lmo4 may be a potential genetic modifier of the Cited2 phenotype. Examination of Lmo4-deficient embryos revealed partially penetrant cardiovascular malformations and hypoplastic thymus. Examination of Lmo4;Cited2 compound mutants indicated that there is a genetic interaction between Cited2 and Lmo4 in control of thymus development. Our data suggest that this may occur, in part, through control of expression of a common target gene, Tbx1, which is necessary for normal thymus development.


Asunto(s)
Embrión de Mamíferos/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Represoras/metabolismo , Timo/embriología , Timo/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Homeodominio/genética , Proteínas con Dominio LIM , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transactivadores/genética , Factores de Transcripción/genética
18.
Mem Inst Oswaldo Cruz ; 104(2): 155-61, 2009 03.
Artículo en Inglés | MEDLINE | ID: mdl-19430637

RESUMEN

Parasite differentiation from proliferating tachyzoites into latent bradyzoites is central to pathogenesis and transmission of the intracellular protozoan pathogen Toxoplasma gondii. The presence of bradyzoite-containing cysts in human hosts and their subsequent rupture can cause life-threatening recrudescence of acute infection in the immunocompromised and cyst formation in other animals contributes to zoonotic transmission and widespread dissemination of the parasite. In this review, we discuss the evidence showing how the clinically relevant process of bradyzoite differentiation is regulated at both transcriptional and post-transcriptional levels. Specific regulatory factors implicated in modulating bradyzoite differentiation include promoter-based cis-elements, epigenetic modifications and protein translation control through eukaryotic initiation factor -2 (eIF2). In addition to a summary of the current state of knowledge in these areas we discuss the pharmacological ramifications and pose some questions for future research.


Asunto(s)
Toxoplasma/patogenicidad , Animales , Diferenciación Celular , Epigénesis Genética , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Transducción de Señal , Toxoplasma/citología , Toxoplasma/genética , Activación Transcripcional
19.
Mem. Inst. Oswaldo Cruz ; 104(2): 155-161, Mar. 2009. ilus
Artículo en Inglés | LILACS | ID: lil-533501

RESUMEN

Parasite differentiation from proliferating tachyzoites into latent bradyzoites is central to pathogenesis and transmission of the intracellular protozoan pathogen Toxoplasma gondii. The presence of bradyzoite-containing cysts in human hosts and their subsequent rupture can cause life-threatening recrudescence of acute infection in the immunocompromised and cyst formation in other animals contributes to zoonotic transmission and widespread dissemination of the parasite. In this review, we discuss the evidence showing how the clinically relevant process of bradyzoite differentiation is regulated at both transcriptional and post-transcriptional levels. Specific regulatory factors implicated in modulating bradyzoite differentiation include promoter-based cis-elements, epigenetic modifications and protein translation control through eukaryotic initiation factor -2 (eIF2). In addition to a summary of the current state of knowledge in these areas we discuss the pharmacological ramifications and pose some questions for future research.


Asunto(s)
Animales , Humanos , Toxoplasma/patogenicidad , Diferenciación Celular , Epigénesis Genética , /genética , /metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Transducción de Señal , Activación Transcripcional , Toxoplasma/citología , Toxoplasma/genética
20.
J Biol Chem ; 283(24): 16591-601, 2008 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-18420584

RESUMEN

A key problem in the treatment of numerous pathogenic eukaryotes centers on their development into latent forms during stress. For example, the opportunistic protist Toxoplasma gondii converts to latent cysts (bradyzoites) responsible for recrudescence of disease. We report that Toxoplasma eukaryotic initiation factor-2alpha (TgIF2alpha) is phosphorylated during stress and establish that protozoan parasites utilize translation control to modulate gene expression during development. Importantly, TgIF2alpha remains phosphorylated in bradyzoites, explaining how these cells maintain their quiescent state. Furthermore, we have characterized novel eIF2 kinases; one in the endoplasmic reticulum and a likely regulator of the unfolded protein response (TgIF2K-A) and another that is a probable responder to cytoplasmic stresses (TgIF2K-B). Significantly, our data suggest that 1) the regulation of protein translation through eIF2 kinases is associated with development, 2) eIF2alpha phosphorylation is employed by cells to maintain a latent state, and 3) endoplasmic reticulum and cytoplasmic stress responses evolved in eukaryotic cells before the early diverging Apicomplexa. Given its importance to pathogenesis, eIF2 kinase-mediated stress responses may provide opportunities for novel therapeutics.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Regulación Enzimológica de la Expresión Génica , Biosíntesis de Proteínas , Toxoplasma/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Centrifugación por Gradiente de Densidad , Clonación Molecular , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Estrés Oxidativo , Fosforilación , Tunicamicina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA