Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Oncogene ; 36(45): 6282-6292, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-28692052

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme that generates NADPH to maintain reduced glutathione (GSH), which scavenges reactive oxygen species (ROS) to protect cancer cell from oxidative damage. In this study, we mainly investigate the potential roles of G6PD in colorectal cancer (CRC) development and chemoresistance. We discover that G6PD is overexpressed in CRC cells and patient specimens. High expression of G6PD predicts poor prognosis and correlated with poor outcome of oxaliplatin-based first-line chemotherapy in patients with CRC. Suppressing G6PD decreases NADPH production, lowers GSH levels, impairs the ability to scavenge ROS levels, and enhances oxaliplatin-induced apoptosis in CRC via ROS-mediated damage in vitro. In vivo experiments further shows that silencing G6PD with lentivirus or non-viral gene delivery vector enhances oxaliplatin anti-tumor effects in cell based xenografts and PDX models. In summary, our finding indicated that disrupting G6PD-mediated NADPH homeostasis enhances oxaliplatin-induced apoptosis in CRC through redox modulation. Thus, this study indicates that G6PD is a potential prognostic biomarker and a promising target for CRC therapy.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/enzimología , Glucosafosfato Deshidrogenasa/metabolismo , Compuestos Organoplatinos/farmacología , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Femenino , Técnicas de Silenciamiento del Gen , Glucosafosfato Deshidrogenasa/biosíntesis , Glucosafosfato Deshidrogenasa/genética , Células HCT116 , Células HT29 , Homeostasis/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos BALB C , Oxaliplatino , Oxidación-Reducción , Pronóstico , Distribución Aleatoria , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Leukemia ; 31(10): 2143-2150, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28194038

RESUMEN

Internal tandem duplication (ITD) mutation in Fms-like tyrosine kinase 3 gene (FLT3/ITD) represents an unfavorable genetic change in acute myeloid leukemia (AML) and is associated with poor prognosis. Metabolic alterations have been involved in tumor progression and attracted interest as a target for therapeutic intervention. However, few studies analyzed the adaptations of cellular metabolism in the context of FLT3/ITD mutation. Here, we report that FLT3/ITD causes a significant increase in aerobic glycolysis through AKT-mediated upregulation of mitochondrial hexokinase (HK2), and renders the leukemia cells highly dependent on glycolysis and sensitive to pharmacological inhibition of glycolytic activity. Inhibition of glycolysis preferentially causes severe ATP depletion and massive cell death in FLT3/ITD leukemia cells. Glycolytic inhibitors significantly enhances the cytotoxicity induced by FLT3 tyrosine kinase inhibitor sorafenib. Importantly, such combination provides substantial therapeutic benefit in a murine model bearing FLT3/ITD leukemia. Our study suggests that FLT3/ITD mutation promotes Warburg effect, and such metabolic alteration can be exploited to develop effective therapeutic strategy for treatment of AML with FLT3/ITD mutation via metabolic intervention.


Asunto(s)
Glucólisis/genética , Repeticiones de Microsatélite , Terapia Molecular Dirigida , Proteínas de Neoplasias/genética , Tirosina Quinasa 3 Similar a fms/genética , Adenosina Trifosfato/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular , Transformación Celular Neoplásica , Desoxiglucosa/farmacología , Glucólisis/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Hexoquinasa/biosíntesis , Hexoquinasa/genética , Humanos , Hidrocarburos Bromados/farmacología , Leucemia Experimental/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Mitocondrias/enzimología , Proteínas de Neoplasias/fisiología , Niacinamida/análogos & derivados , Niacinamida/farmacología , Niacinamida/uso terapéutico , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Propionatos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sorafenib , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/fisiología
3.
Cell Death Differ ; 21(1): 124-35, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24096870

RESUMEN

Side population (SP) cells within tumors are a small fraction of cancer cells with stem-like properties that can be identified by flow cytometry analysis based on their high ability to export certain compounds such as Hoechst 33342 and chemotherapeutic agents. The existence of stem-like SP cells in tumors is considered as a key factor contributing to drug resistance, and presents a major challenge in cancer treatment. Although it has been recognized for some time that tumor tissue niches may significantly affect cancer stem cells (CSCs), the role of key nutrients such as glucose in the microenvironment in affecting stem-like cancer cells and their metabolism largely remains elusive. Here we report that SP cells isolated from human cancer cells exhibit higher glycolytic activity compared to non-SP cells. Glucose in the culture environment exerts a profound effect on SP cells as evidenced by its ability to induce a significant increase in the percentage of SP cells in the overall cancer cell population, and glucose starvation causes a rapid depletion of SP cells. Mechanistically, glucose upregulates the SP fraction through ATP-mediated suppression of AMPK and activation of the Akt pathway, leading to elevated expression of the ATP-dependent efflux pump ABCG2. Importantly, inhibition of glycolysis by 3-BrOP significantly reduces SP cells in vitro and impairs their ability to form tumors in vivo. Our data suggest that glucose is an essential regulator of SP cells mediated by the Akt pathway, and targeting glycolysis may eliminate the drug-resistant SP cells with potentially significant benefits in cancer treatment.


Asunto(s)
Glucosa/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cromonas/farmacología , Regulación de la Expresión Génica , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Hidrocarburos Bromados/farmacología , Hidrocarburos Bromados/uso terapéutico , Ratones , Ratones Desnudos , Morfolinas/farmacología , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Propionatos/farmacología , Propionatos/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Interferencia de ARN , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA