Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Pediatr Surg ; 59(7): 1334-1341, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38570263

RESUMEN

BACKGROUND: Chemoresistance contributes to relapse in high-risk neuroblastoma. Cancer cells acquire resistance through multiple mechanisms, including drug efflux pumps. In neuroblastoma, multidrug resistance-associated protein-1 (MRP1/ABCC1) efflux pump expression correlates with worse outcomes. These pumps are regulated by PIM kinases, a family of serine-threonine kinases, overexpressed in neuroblastoma. We hypothesized PIM kinase inhibition would sensitize neuroblastoma cells by modulating MRP1. METHODS: Kocak database query evaluated ABCC1, PIM1, PIM2, and PIM3 expression in neuroblastoma patients. SK-N-AS and SK-N-BE(2) cells were treated with doxorubicin or the pan-PIM kinase inhibitor, AZD1208. Flow cytometry assessed intracellular doxorubicin accumulation. AlamarBlue assay measured viability. The lethal dose 50% (LD50) of each drug and combination indices (CI) were calculated and isobolograms constructed to determine synergy. RESULTS: Kocak database query demonstrated positive correlation between PIM genes and ABCC1. PIM kinase inhibition increased intracellular doxorubicin accumulation in both cell lines, suggesting PIM kinase regulation of MRP1. Isobolograms showed synergy between AZD1208 and doxorubicin. CONCLUSIONS: The correlation between PIM and ABCC1 gene expression suggests PIM kinases may contribute to neuroblastoma chemotherapeutic resistance. PIM kinase inhibition increased intracellular doxorubicin accumulation. Combination treatment with AZD1208 and doxorubicin decreased neuroblastoma cell viability in a synergistic fashion. These findings support further investigations of PIM kinase inhibition in neuroblastoma. TYPE OF STUDY: Basic Science Research. LEVEL OF EVIDENCE: NA.


Asunto(s)
Doxorrubicina , Resistencia a Antineoplásicos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Neuroblastoma , Proteínas Proto-Oncogénicas c-pim-1 , Humanos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Neuroblastoma/genética , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Línea Celular Tumoral , Antibióticos Antineoplásicos/uso terapéutico , Antibióticos Antineoplásicos/farmacología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Sinergismo Farmacológico , Compuestos de Bifenilo , Tiazolidinas
2.
J Pediatr Surg ; 59(3): 473-482, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37919169

RESUMEN

BACKGROUND: Sarcomas are a heterogenous collection of bone and soft tissue tumors. The heterogeneity of these tumors makes it difficult to standardize treatment. CDK 4/6 inhibitors are a family of targeted agents which limit cell cycle progression and have been shown to be upregulated in sarcomas. In the current preclinical study, we evaluated the effects of lerociclib, a CDK4/6 inhibitor, on pediatric sarcomas in vitro and in 3D bioprinted tumors. METHODS: The effects of lerociclib on viability, proliferation, cell cycle, motility, and stemness were assessed in established sarcoma cell lines, U-2 OS and MG-63, as well as sarcoma patient-derived xenografts (PDXs). 3D printed biotumors of each of the U-2 OS, MG-63, and COA79 cells were utilized to study the effects of lerociclib on tumor growth ex vivo. RESULTS: CDK 4/6, as well as the intermediaries retinoblastoma protein (Rb) and phosphorylated Rb were identified as targets in the four sarcoma cell lines. Lerociclib treatment induced cell cycle arrest, decreased proliferation, motility, and stemness of sarcoma cells. Treatment with lerociclib decreased sarcoma cell viability in both traditional 2D culture as well as 3D bioprinted microtumors. CONCLUSIONS: Inhibition of CDK 4/6 activity with lerociclib was efficacious in traditional 2D sarcoma cell culture as well as in 3D bioprints. Lerociclib holds promise and warrants further investigation as a novel therapeutic strategy for management of these heterogenous groups of tumors.


Asunto(s)
Antineoplásicos , Sarcoma , Niño , Humanos , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteína de Retinoblastoma/metabolismo , Proteína de Retinoblastoma/farmacología , Proteína de Retinoblastoma/uso terapéutico , Fosforilación , Línea Celular Tumoral , Proliferación Celular , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/uso terapéutico
3.
Int J Bioprint ; 9(4): 723, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323483

RESUMEN

The use of three-dimensional (3D) bioprinting has remained at the forefront of tissue engineering and has recently been employed for generating bioprinted solid tumors to be used as cancer models to test therapeutics. In pediatrics, neural crest-derived tumors are the most common type of extracranial solid tumors. There are only a few tumor-specific therapies that directly target these tumors, and the lack of new therapies remains detrimental to improving the outcomes for these patients. The absence of more efficacious therapies for pediatric solid tumors, in general, may be due to the inability of the currently employed preclinical models to recapitulate the solid tumor phenotype. In this study, we utilized 3D bioprinting to generate neural crest-derived solid tumors. The bioprinted tumors consisted of cells from established cell lines and patient-derived xenograft tumors mixed with a 6% gelatin/1% sodium alginate bioink. The viability and morphology of the bioprints were analyzed via bioluminescence and immunohisto chemistry, respectively. We compared the bioprints to traditional twodimensional (2D) cell culture under conditions such as hypoxia and therapeutics. We successfully produced viable neural crest-derived tumors that retained the histology and immunostaining characteristics of the original parent tumors. The bioprinted tumors propagated in culture and grew in orthotopic murine models. Furthermore, compared to cells grown in traditional 2D culture, the bioprinted tumors were resistant to hypoxia and chemotherapeutics, suggesting that the bioprints exhibited a phenotype that is consistent with that seen clinically in solid tumors, thus potentially making this model superior to traditional 2D culture for preclinical investigations. Future applications of this technology entail the potential to rapidly print pediatric solid tumors for use in high-throughput drug studies, expediting the identification of novel, individualized therapies.

4.
J Pediatr Surg ; 58(6): 1155-1163, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36907773

RESUMEN

BACKGROUND: Neuroblastoma arises from aberrancies in neural stem cell differentiation. PIM kinases contribute to cancer formation, but their precise role in neuroblastoma tumorigenesis is poorly understood. In the current study, we evaluated the effects of PIM kinase inhibition on neuroblastoma differentiation. METHODS: Versteeg database query assessed the correlation between PIM gene expression and the expression of neuronal stemness markers and relapse free survival. PIM kinases were inhibited with AZD1208. Viability, proliferation, motility were measured in established neuroblastoma cells lines and high-risk neuroblastoma patient-derived xenografts (PDXs). qPCR and flow cytometry detected changes in neuronal stemness marker expression after AZD1208 treatment. RESULTS: Database query showed increased levels of PIM1, PIM2, or PIM3 gene expression were associated with higher risk of recurrent or progressive neuroblastoma. Increased levels of PIM1 were associated with lower relapse free survival rates. Higher levels of PIM1 correlated with lower levels of neuronal stemness markers OCT4, NANOG, and SOX2. Treatment with AZD1208 resulted in increased expression of neuronal stemness markers. CONCLUSIONS: Inhibition of PIM kinases differentiated neuroblastoma cancer cells toward a neuronal phenotype. Differentiation is a key component of preventing neuroblastoma relapse or recurrence and PIM kinase inhibition provides a potential new therapeutic strategy for this disease.


Asunto(s)
Recurrencia Local de Neoplasia , Neuroblastoma , Humanos , Proliferación Celular , Proteínas Proto-Oncogénicas c-pim-1/genética , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Diferenciación Celular , Fenotipo , Neuroblastoma/tratamiento farmacológico , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología
5.
J Pediatr Surg ; 58(6): 1145-1154, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36907775

RESUMEN

BACKGROUND: The tumor suppressor, protein phosphatase 2A (PP2A), is downregulated in hepatoblastoma. We aimed to examine the effects of two novel compounds of the tricyclic sulfonamide class, ATUX-3364 (3364) and ATUX-8385 (8385), designed to activate PP2A without causing immunosuppression, on human hepatoblastoma. METHODS: An established human hepatoblastoma cell line, HuH6, and a human hepatoblastoma patient-derived xenograft, COA67, were treated with increasing doses of 3364 or 8385, and viability, proliferation, cell cycle and motility were investigated. Cancer cell stemness was evaluated by real-time PCR and tumorsphere forming ability. Effects on tumor growth were examined using a murine model. RESULTS: Treatment with 3364 or 8385 significantly decreased viability, proliferation, cell cycle progression and motility in HuH6 and COA67 cells. Both compounds significantly decreased stemness as demonstrated by decreased abundance of OCT4, NANOG, and SOX2 mRNA. The ability of COA67 to form tumorspheres, another sign of cancer cell stemness, was significantly diminished by 3364 and 8385. Treatment with 3364 resulted in decreased tumor growth in vivo. CONCLUSION: Novel PP2A activators, 3364 and 8385, decreased hepatoblastoma proliferation, viability, and cancer cell stemness in vitro. Animals treated with 3364 had decreased tumor growth. These data provide evidence for further investigation of PP2A activating compounds as hepatoblastoma therapeutics.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Animales , Ratones , Hepatoblastoma/tratamiento farmacológico , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Neoplasias Hepáticas/genética , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/farmacología , Proteína Fosfatasa 2/uso terapéutico , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Línea Celular Tumoral , Proliferación Celular
6.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38203596

RESUMEN

Hepatoblastoma is the most common primary pediatric liver tumor. Children with pulmonary metastases at diagnosis experience survival rates as low as 25%. We have shown PIM kinases play a role in hepatoblastoma tumorigenesis. In this study, we assessed the role of PIM kinases in metastatic hepatoblastoma. We employed the metastatic hepatoblastoma cell line, HLM_2. PIM kinase inhibition was attained using PIM3 siRNA and the pan-PIM inhibitor, AZD1208. Effects of PIM inhibition on proliferation were evaluated via growth curve. Flow cytometry determined changes in cell cycle. AlamarBlue assay assessed effects of PIM kinase inhibition and cisplatin treatment on viability. The lethal dose 50% (LD50) of each drug and combination indices (CI) were calculated and isobolograms constructed to determine synergy. PIM kinase inhibition resulted in decreased HLM_2 proliferation, likely through cell cycle arrest mediated by p21. Combination therapy with AZD1208 and cisplatin resulted in synergy, potentially through downregulation of the ataxia-telangiectasia mutated (ATM) kinase DNA damage response pathway. When assessing the combined effects of pharmacologic PIM kinase inhibition with cisplatin on HLM_2 cells, we found the agents to be synergistic, potentially through inhibition of the ATM pathway. These findings support further exploration of PIM kinase inhibition as a therapeutic strategy for metastatic hepatoblastoma.


Asunto(s)
Ataxia Telangiectasia , Compuestos de Bifenilo , Hepatoblastoma , Neoplasias Hepáticas , Proteínas Proto-Oncogénicas c-pim-1 , Tiazolidinas , Niño , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Hepatoblastoma/tratamiento farmacológico , Hepatoblastoma/genética , Neoplasias Hepáticas/tratamiento farmacológico
7.
J Pediatr Surg Case Rep ; 84: 102359, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35754931

RESUMEN

Xanthogranulmatous pyelonephritis is a rare, chronic inflammatory pathology of the kidney. It most commonly arises in middle-aged females, but there are case reports and series described in the pediatric population. Here, we discuss the case of a 14 year old male who presented with xanthogranulomatous pyelonephritis in the setting of Covid-19 and multi-system inflammatory syndrome (MIS-C). As xanthogranulomatous pyelonephritis often mimics other diseases that are more prevalent in the pediatric population, our case was only definitively diagnosed with histopathology after surgical resection. This report is novel in that, to our knowledge, it is the first to describe xanthogranulomatous pyelonephritis in the setting of MIS-C.

8.
Cancers (Basel) ; 14(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35454859

RESUMEN

BACKGROUND: Protein phosphatase 2A (PP2A) functions as an inhibitor of cancer cell proliferation, and its tumor suppressor function is attenuated in many cancers. Previous studies utilized FTY720, an immunomodulating compound known to activate PP2A, and demonstrated a decrease in the malignant phenotype in neuroblastoma. We wished to investigate the effects of two novel PP2A activators, ATUX-792 (792) and DBK-1154 (1154). METHODS: Long-term passage neuroblastoma cell lines and human neuroblastoma patient-derived xenograft (PDX) cells were used. Cells were treated with 792 or 1154, and viability, proliferation, and motility were examined. The effect on tumor growth was investigated using a murine flank tumor model. RESULTS: Treatment with 792 or 1154 resulted in PP2A activation, decreased cell survival, proliferation, and motility in neuroblastoma cells. Immunoblotting revealed a decrease in MYCN protein expression with increasing concentrations of 792 and 1154. Treatment with 792 led to tumor necrosis and decreased tumor growth in vivo. CONCLUSIONS: PP2A activation with 792 or 1154 decreased survival, proliferation, and motility of neuroblastoma in vitro and tumor growth in vivo. Both compounds resulted in decreased expression of the oncogenic protein MYCN. These findings indicate a potential therapeutic role for these novel PP2A activators in neuroblastoma.

9.
J Pediatr Surg ; 57(6): 1018-1025, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35300860

RESUMEN

BACKGROUND/PURPOSE: Metastatic hepatoblastoma continues to pose a significant treatment challenge, primarily because the precise mechanisms involved in metastasis are not fully understood, making cell lines and preclinical models that depict the progression of disease and metastasis-related biology paramount. We aimed to generate and characterize a metastatic hepatoblastoma cell line to create a model for investigation of the molecular mechanisms associated with metastasis. MATERIALS/METHODS: Using a murine model of serial tail vein injections of the human hepatoblastoma HuH6 cell line, non-invasive bioluminescence imaging, and dissociation of metastatic pulmonary lesions, we successfully established and characterized the metastatic human hepatoblastoma cell line, HLM_3. RESULTS: The HLM_3 cells exhibited enhanced tumorigenicity and invasiveness, both in vitro and in vivo compared to the parent HuH6 cell line. Moreover, HLM_3 metastatic hepatoblastoma cells exhibited a stem cell-like phenotype and were more resistant to the standard chemotherapeutic cisplatin. CONCLUSION: This newly described metastatic hepatoblastoma cell line offers a novel tool to study mechanisms of tumor metastasis and evaluate new therapeutic strategies for metastatic hepatoblastoma.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , Animales , Línea Celular Tumoral , Hepatoblastoma/patología , Humanos , Neoplasias Hepáticas/patología , Ratones , Fenotipo , Células Madre/metabolismo
10.
Acad Forensic Pathol ; 8(3): 769-776, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31240071

RESUMEN

While reportedly a relatively common finding at the autopsy of decedents with metastatic neoplasms, dural metastases are infrequently described in the medical literature and only 55 cases of subdural hemorrhage associated with dural metastases have been described, with only one of these cases associated with head trauma. We report a 50-year-old incarcerated male who died as the result of acute and chronic subdural hemorrhage associated with recent minor head trauma and dural metastases, which were most likely of pancreatic origin. He had sustained a fall, possibly due to a seizure in his jail cell, developed an acute subdural hemorrhage, and died, necessitating an autopsy. Metastatic tumor in the dura and other organs was identified upon histologic examination and found to be CK7 and CK20 positive and TTF-1 and CDX2 negative, consistent with a pancreatic adenocarcinoma. In addition, marantic endocarditis was identified, which can occur in individuals with mucinous tumors, such as a pancreatic neoplasm. This case report offers the second description of a subdural hemorrhage occurring in association with both dural metastases and recent head trauma and confirms the importance of histologic examination of the subdural hemorrhage and adjacent dura at autopsy for reasons other than just timing of the event.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA