Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Environ Sci (China) ; 74: 168-176, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30340670

RESUMEN

This study investigates the removal of arsenite (As(III)) from water using dithionite activated by UV light. This work evaluated the removal kinetics of As(III) under UV light irradiation as affected by dithionite dose and light intensity, and characterized the nature of the precipitated solids using XPS and SEM-EDS. Photolysis of dithionite was observed by measuring dithionite concentration using UV absorbance at 315nm. This study also investigated the effect of UV light path length on soluble As concentrations to understand resolubilization mechanisms. Total soluble As concentrations were observed to decrease with reaction time due to reduction of arsenite to form solids having a yellow-orange color. The removal mechanism was found to be reductive precipitation that formed solids of elemental arsenic or arsenic sulfide. However, these solids were observed to resolubilize at later times after dithionite had been consumed. Resolubilization of As was prevented and additional As removal was obtained by frequent dosing of dithionite throughout the experiment. As(III) removal is attributed to photolysis of dithionite by UV light and production of reactive radicals that reduce As(III) and convert it to solid forms.


Asunto(s)
Arsenitos/química , Arsenitos/aislamiento & purificación , Precipitación Química , Ditionita/química , Rayos Ultravioleta , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Oxidación-Reducción , Fotólisis , Soluciones
3.
Environ Sci Technol ; 51(22): 13372-13379, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29083909

RESUMEN

Solar-driven heterogeneous photocatalysis has been widely studied as a promising technique for degradation of organic pollutants in wastewater. Herein, we have developed a sulfite-enhanced visible-light-driven photodegradation process using BiOBr/methyl orange (MO) as the model photocatalyst/pollutant system. We found that the degradation rate of MO was greatly enhanced by sulfite, and the enhancement increased with the concentration of sulfite. The degradation rate constant was improved by 29 times in the presence of 20 mM sulfite. Studies using hole scavengers suggest that sulfite radicals generated by the reactions of sulfite (sulfite anions or bisulfite anions) with holes or hydroxyl radicals are the active species for MO photodegradation using BiOBr under visible light. In addition to the BiOBr/MO system, the sulfite-assisted photocatalysis approach has been successfully demonstrated in BiOBr/rhodamine B (RhB), BiOBr/phenol, BiOI/MO, and Bi2O3/MO systems under visible light irradiation, as well as in TiO2/MO system under simulated sunlight irradiation. The developed method implies the potential of introducing external active species to improve photodegradation of organic pollutants and the beneficial use of air pollutants for the removal of water pollutants since sulfite is a waste from flue gas desulfurization process.


Asunto(s)
Fotólisis , Contaminantes del Agua , Catálisis , Luz , Sulfitos
4.
Chemosphere ; 163: 351-358, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27552695

RESUMEN

This study investigates the removal of selenium (IV) from water by reductive precipitation using sodium sulfide at neutral pH. Also, it examines the application of UV light as an activating method to enhance reductive precipitation. Furthermore, this work evaluates the effects of sulfide dose and solution pH on behavior of Se(IV) reduction. Selenium was effectively removed in sulfide solution at both neutral and acidic pH. UV irradiation did not enhance removal efficiency of Se(IV) at conditions tested, but it affected solids morphology and composition. SEM/EDS and XPS results showed that selenite was reduced to elemental Se or Se-S precipitates (e.g. SenS8-n) in sulfide solution. High resolution S 2p XPS spectra suggested the presence of sulfur-containing anions (e.g. S2O3(2-), HSO3(-), etc.) or elemental S (S(0)), monosulfide (S(2-)), and polysulfides (Sn(2-)), which could be produced from sulfide photolysis or reaction with Se. In addition, large aggregates of irregular shape, which suggest Se-S precipitates or elemental sulfur, were found more prominently at pH 4 than at pH 7, and they were more noticeable in the presence of UV with longer reaction times. In addition, XRD patterns showed that gray elemental Se solids were dominant in experiments without UV, whereas Se-S precipitates (Se3S5) with an orange color were found in those with UV.


Asunto(s)
Selenio/análisis , Sulfuros/química , Contaminantes Químicos del Agua/análisis , Agua/química , Concentración de Iones de Hidrógeno , Cinética , Microscopía Electrónica de Rastreo , Fotólisis , Selenio/química , Compuestos de Selenio/química , Soluciones , Análisis Espectral , Sulfuros/análisis , Azufre/química , Rayos Ultravioleta , Difracción de Rayos X
5.
Chemosphere ; 117: 663-72, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25461933

RESUMEN

Advanced Reduction Processes (ARP) have been developed by combining UV irradiation with reducing reagents, which produces reactive reducing free radicals that degrade contaminants (e.g. vinyl chloride, 1,2-dichloroethane, perchlorate, and bromate). This study investigates bromate destruction by ARPs using medium-pressure mercury UV light lamp (UV-M) and low-pressure mercury UV light lamp (UV-L). Effects of experimental parameters including initial bromate concentration, reducing reagent (sulfite) dose, and pH on bromate removal kinetics and quantum yield were evaluated. The pseudo-first-order rate constant (kobs) by UV-M ARP was greater by 3 times than that by UV-L ARP. UV-M and UV-L achieved a complete bromate removal of an initial concentration at 500 ppb with fluences of 10.5 J cm−2 and 73.5 J cm−2, respectively. It was found that direct photolysis is a dominant mechanism with the UV-M ARP showing that the effect of sulfite dose had no apparent influence on the bromate removal, whereas kobs was dependent on the sulfite doses in UV-L/sulfite ARP. In the presence of sulfite, kobs was affected by the solution pH in both the UV-M and UV-L ARPs. The pH effect on UV-L ARP or UV-M ARP was explained by the effect of pH on the sulfite species distribution between sulfite and bisulfite or the hydrated electrons concentrations. Also it was found that dominant reaction mechanism of bromate removal was changed by initial bromate concentrations, and its behavior was varied dependent on the UV light sources.


Asunto(s)
Bromatos/efectos de la radiación , Fotólisis , Rayos Ultravioleta , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/efectos de la radiación , Radicales Libres/química , Mercurio/química , Oxidación-Reducción , Sulfitos/química
6.
Sci Total Environ ; 496: 155-164, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25079234

RESUMEN

The introduction of nanoscale zero valent iron (nZVI) into the subsurface has recently received significant attention as a potentially effective method for remediation of source zones of chlorinated solvents present as dense nonaqueous phase liquids (DNAPL). One of the challenges in the deployment of nZVI is to achieve good subsurface nZVI mobility to permit delivery of the nZVI to the target treatment zone. Stabilization of nZVI with various polymers has shown promise for enhancing nZVI subsurface mobility, but the impact of subsurface conditions on nZVI mobility has not been fully explored. In this study, the effect of humic acid and kaolinite on the transport of polymer-stabilized nZVI (carboxylmethyl cellulose-surface modified nZVI, CMC90K-RNIP) in sand was investigated using column experiments. In addition, effects of electrolytes on the stability of CMC90K-RNIP in the presence of humic acid, and the stability of humic acid-coated reactive nanoscale iron particles (HA-RNIP) at various humic acid concentrations were investigated. Humic acid enhanced the mobility of bare RNIP, whereas the transport of CMC90K-RNIP was not significantly affected by humic acid injected as a background solution, except at the highest concentration of 500mg/L. At lower pore water velocity, the effect of humic acid on the transport of CMC90K-RNIP was greater than that at high water velocity. Adding kaolinite up to 2% by weight to the sand column reduced the retention of CMC90K-RNIP, but further increases in kaolinite content (to 5%) did not significantly affect nZVI retention. The impact of kaolinite on nZVI retention was more pronounced at lower pore water velocities.


Asunto(s)
Silicatos de Aluminio/química , Sustancias Húmicas , Hierro/química , Nanopartículas del Metal/química , Polímeros/química , Contaminantes Químicos del Agua/química , Arcilla , Modelos Químicos , Movimientos del Agua
7.
Sci Total Environ ; 449: 443-50, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23454706

RESUMEN

Iron-based degradative solidification/stabilization (DS/S-Fe(II)) is a modification of conventional solidification/stabilization (S/S) that incorporates degradative processes for organic contaminant destruction with immobilization. This study investigated the effectiveness of a binder mixture of Portland cement and slag in a DS/S-Fe(II) system to treat trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), vinyl chloride (VC), trichloromethane (CF), and dichloromethane (MC), which are major chlorinated hydrocarbons contained in waste oils and waste organic solvents. For TCE, 1,1-DCE, and VC, degradation experiments were conducted using three different binder combinations with Fe(II) (cement/Fe(II), slag/Fe(II), and cement/slag/Fe(II)). When cement and slag were mixed at a 1:1 ratio (% wt), the TCE and 1,1-DCE dechlorination rate was enhanced compared to that when cement or slag was used alone with Fe(II). Also, batch experiments were conducted in the solid phase consisting of cement, slag, sand, and Fe(II) to treat liquid wastes that contain chlorinated compounds at high concentrations. TCE was completely removed after 5 days in the cement/slag/sand/Fe(II) system, in which the initial TCE concentration was 11.8mM, with Fe(II) concentration of 565 mM. While the CF concentration was decreased by 95% after 5 days when the initial CF and Fe(II) concentration was 0.25 mM and 200 mM, respectively. However, MC was not degraded with the cement/slag/Fe(II) system.

8.
J Hazard Mater ; 163(2-3): 1315-21, 2009 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-18804328

RESUMEN

This study examines the applicability of the iron-based degradative solidification/stabilization (DS/S-Fe(II)) process to 1,1,1-trichloroethane (1,1,1-TCA), which is one of common chlorinated aliphatic hydrocarbons (CAHs) of concern at contaminated sites. DS/S-Fe(II) combines contaminant degradation by Fe(II) and immobilization by the hydration reactions of Portland cement. The transformation of 1,1,1-TCA by Fe(II) in 10% Portland cement slurries was studied using a batch slurry reactor system. The effects of Fe(II) dose, pH, and initial concentration of 1,1,1-TCA on the kinetics of 1,1,1-TCA degradation were evaluated. Degradation of 1,1,1-TCA in cement slurries including Fe(II) was very rapid and could be described by a pseudo-first-order rate law. The half-lives for 1,1,1-TCA were measured between 0.4 and 5h when Fe(II) dose ranged from 4.9 to 39.2mM. The pseudo-first-order rate constant increased with pH to a maximum near pH 12.5. A saturation rate equation was able to predict degradation kinetics over a wide range of target organic concentrations and at higher Fe(II) doses. The major transformation product of 1,1,1-TCA in mixtures of Fe(II) and cement was 1,1-dichloroethane (1,1-DCA), which indicates that degradation occurred by a hydrogenolysis pathway. A small amount of ethane was observed. The conversion of 1,1,1-TCA to ethane was better described by a parallel reaction model than by a consecutive reaction model.


Asunto(s)
Hierro/química , Tricloroetanos/química , Etano , Cinética
9.
J Hazard Mater ; 152(1): 62-70, 2008 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-17707584

RESUMEN

Degradative solidification/stabilization with ferrous iron (DS/S-Fe(II)) has been found to be effective in degrading a number of chlorinated aliphatic hydrocarbons including 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA), tetrachloroethylene (PCE), trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), vinyl chloride (VC), carbon tetrachloride (CT) and chloroform (CF). Previous studies have characterized degradation kinetics in DS/S-Fe(II) systems as affected by Fe(II) dose, pH and initial target organic concentration. The goal of this study is to investigate the importance of various chemical properties on degradation kinetics of DS/S-Fe(II). This was accomplished by first measuring rate constants for degradation of 1,1,1-TCA, 1,1,2,2-TeCA and 1,2-dichloroethane (1,2-DCA) in individual batch experiments. Rate constants developed in these experiments and those obtained from the literature were related to thermodynamic parameters including one-electron reduction potential, two-electron reduction potential, bond dissociation energy and lowest unoccupied molecular orbital energies. Degradation kinetics by Fe(II) in cement slurries were generally represented by a pseudo-first-order rate law. The results showed that the rate constants for chlorinated methanes (e.g. CT, CF) and chlorinated ethanes (e.g. 1,1,1-TCA) were higher than those for chlorinated ethylenes (e.g. PCE, TCE, 1,1-DCE and VC) under similar experimental conditions. The log of the pseudo-first-order rate constant (k) was found to correlate better with lowest unoccupied molecular orbital energies (E(LUMO)) (R2=0.874) than with other thermodynamic parameter descriptors.


Asunto(s)
Cloro/química , Materiales de Construcción , Compuestos Ferrosos/química , Hidrocarburos Clorados/química , Cinética
10.
Chemosphere ; 71(4): 726-34, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18068753

RESUMEN

Transformation of 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) by Fe(II) in 10% cement slurries was characterized using a batch reactor system. 1,1,2,2-TeCA was completely converted to trichloroethylene (TCE) within 1h in all experiments, even in controls with cement that did not include Fe(II). Therefore, complete degradation of 1,1,2,2-TeCA depends on the behavior of TCE. The half-life of TCE was observed to be 15d when concentrations of Fe(II) and 1,1,2,2-TeCA were 98mM and 0.245mM, respectively. The kinetics of TCE removal was observed to be dependent on Fe(II) dose, pH and initial substrate concentration. Pseudo-first-order rate constants linearly increased with Fe(II) dose up to 198mM when initial target concentration was 0.245mM. Pseudo-first-order kinetics generally described the degradation reactions of TCE at a specific initial concentration, but a modified Langmuir-Hinshelwood model was necessary to describe the degradation kinetics of TCE over a wide range of initial concentrations. A surface reaction of TCE on active solids, which were formed from Fe(II) and products of cement hydration appears to control observed TCE degradation kinetics.


Asunto(s)
Materiales de Construcción , Etano/análogos & derivados , Compuestos Ferrosos/química , Hidrocarburos Clorados/química , Tricloroetileno/química , Etano/química , Concentración de Iones de Hidrógeno , Cinética , Oregon , Oxidación-Reducción , Agua/química
11.
Chemosphere ; 68(7): 1254-61, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17368506

RESUMEN

This study examines the effect of iron-bearing phyllosilicates on dechlorination rates of chlorinated aliphatic hydrocarbons (CAHs) in iron-based degradative solidification/stabilization (DS/S-Fe(II)). Laboratory batch experiments were conducted to evaluate dechlorination rates of 1,1,1-trichloroethane (1,1,1-TCA) in a mixture solution of Fe(II), cement and three different iron-bearing phyllosilicates (biotite, vermiculite, and montmorillonite). A first-order rate model was generally used to describe the dechlorination kinetics and the rate constants were dependent on soil mineral type (biotite, vermiculite, and montmorillonite), Fe(II) dose, and the mass ratio of cement to soil mineral. The pseudo-first-order rate constant for montmorillonite was lower than that for biotite and vermiculite by factors of 11-27 when the mass ratio of cement to phyllosilicates was fixed at one. The presence of biotite and vermiculite increase and the presence of montmorillonite decrease the degradation rate that would be observed in their absence. The effect of cement/mineral ratio on rate constants with three different soil minerals indicates that biotite was more reactive than the other two phyllosilicates. This may be due to high accessible natural Fe(II) content in biotite. Montmorillonite appears to inhibit dechlorination by either inactivating Fe(II) by ion exchange or by physically blocking active sites on cement hydration products.


Asunto(s)
Hierro/química , Tricloroetanos/química , Silicatos de Aluminio/química , Bentonita/química , Materiales de Construcción , Compuestos Ferrosos/química , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA