Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
iScience ; 27(7): 110104, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38989470

RESUMEN

Coronary artery disease (CAD) remains a leading cause of disease burden globally, and there is a persistent need for new therapeutic targets. Instrumental variable (IV) and genetic colocalization analyses can help identify novel therapeutic targets for human disease by nominating causal genes in genome-wide association study (GWAS) loci. We conducted cis-IV analyses for 20,125 genes and 1,746 plasma proteins with CAD using molecular trait quantitative trait loci variant (QTLs) data from three different studies. 19 proteins and 119 genes were significantly associated with CAD risk by IV analyses and demonstrated evidence of genetic colocalization. Notably, our analyses validated well-established targets such as PCSK9 and ANGPTL4 while also identifying HTRA1 and endotrophin (a cleavage product of COL6A3) as proteins whose levels are causally associated with CAD risk. Further experimental studies are needed to confirm the causal role of the genes and proteins identified through our multiomic cis-IV analyses on human disease.

2.
Heliyon ; 10(4): e25760, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38370227

RESUMEN

Sushi, von Willebrand factor type A, EGF and pentraxin domain containing 1 (SVEP1) is an extracellular matrix protein that causally promotes cardiovascular disease in humans and mice. However, the receptor mediating the effect of SVEP1 on the development of disease remains unclear. We previously demonstrated that depleting either vascular smooth muscle cell (VSMC)- or myeloid cell-derived integrin α9ß1, the first receptor that was identified to interact with SVEP1, did not phenocopy the disease-abrogating effect of depleting SVEP1. Due to its wide expression in tissues and cell types, here we extend this line of investigation to definitively determine if integrin α9ß1 impacts the development of atherosclerosis. In a mouse model of atherosclerosis, we found that depleting integrin α9ß1 in all cells did not alter plaque size or characteristics of plaque complexity when compared to wild type mice. Further, the significant SVEP1-mediated effects on increase in macrophage content and VSMC proliferation within the atherosclerotic plaque were not altered in animals lacking integrin α9ß1. Together, these findings strongly suggest that integrin α9ß1 is not responsible for mediating the SVEP1-induced promotion of atherosclerosis and support further studies aimed at characterizing other receptors whose interaction with SVEP1 may represent a therapeutically targetable interaction.

3.
J Lipid Res ; 65(2): 100500, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38219820

RESUMEN

Angiopoietin-like protein 3 (ANGPTL3) is a hepatically secreted protein and therapeutic target for reducing plasma triglyceride-rich lipoproteins and low-density lipoprotein (LDL) cholesterol. Although ANGPTL3 modulates the metabolism of circulating lipoproteins, its role in triglyceride-rich lipoprotein assembly and secretion remains unknown. CRISPR-associated protein 9 (CRISPR/Cas9) was used to target ANGPTL3 in HepG2 cells (ANGPTL3-/-) whereupon we observed ∼50% reduction of apolipoprotein B100 (ApoB100) secretion, accompanied by an increase in ApoB100 early presecretory degradation via a predominantly lysosomal mechanism. Despite defective particle secretion in ANGPTL3-/- cells, targeted lipidomic analysis did not reveal neutral lipid accumulation in ANGPTL3-/- cells; rather ANGPTL3-/- cells demonstrated decreased secretion of newly synthesized triglycerides and increased fatty acid oxidation. Furthermore, RNA sequencing demonstrated significantly altered expression of key lipid metabolism genes, including targets of peroxisome proliferator-activated receptor α, consistent with decreased lipid anabolism and increased lipid catabolism. In contrast, CRISPR/Cas9 LDL receptor (LDLR) deletion in ANGPTL3-/- cells did not result in a secretion defect at baseline, but proteasomal inhibition strongly induced compensatory late presecretory degradation of ApoB100 and impaired its secretion. Additionally, these ANGPTL3-/-;LDLR-/- cells rescued the deficient LDL clearance of LDLR-/- cells. In summary, ANGPTL3 deficiency in the presence of functional LDLR leads to the production of fewer lipoprotein particles due to early presecretory defects in particle assembly that are associated with adaptive changes in intrahepatic lipid metabolism. In contrast, when LDLR is absent, ANGPTL3 deficiency is associated with late presecretory regulation of ApoB100 degradation without impaired secretion. Our findings therefore suggest an unanticipated intrahepatic role for ANGPTL3, whose function varies with LDLR status.


Asunto(s)
Proteína 3 Similar a la Angiopoyetina , Metabolismo de los Lípidos , Proteínas Similares a la Angiopoyetina/metabolismo , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo , Metabolismo de los Lípidos/genética , Lipoproteínas/metabolismo , Hígado/metabolismo , Triglicéridos/metabolismo
4.
Trends Mol Med ; 29(11): 939-950, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37673700

RESUMEN

Sushi, von Willebrand factor type A, EGF, and pentraxin domain containing 1 (SVEP1) is a large extracellular matrix protein that is also detected in circulation. Recent plasma proteomic and genomic studies have revealed a large number of associations between SVEP1 and human traits, particularly chronic disease. These include associations with cardiac death and disease, diabetes, platelet traits, glaucoma, dementia, and aging; many of these are causal. Animal models demonstrate that SVEP1 is critical in vascular development and disease, but its molecular and cellular mechanisms remain poorly defined. Future studies should aim to characterize these mechanisms and determine the diagnostic, prognostic, and therapeutic value of measuring or intervening on this enigmatic protein.


Asunto(s)
Moléculas de Adhesión Celular , Proteómica , Animales , Humanos , Moléculas de Adhesión Celular/genética , Plaquetas/metabolismo , Fenotipo
5.
Circ Res ; 133(3): 200-219, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37350264

RESUMEN

BACKGROUND: The mTOR (mechanistic target of rapamycin) pathway is a complex signaling cascade that regulates cellular growth, proliferation, metabolism, and survival. Although activation of mTOR signaling has been linked to atherosclerosis, its direct role in lesion progression and in plaque macrophages remains poorly understood. We previously demonstrated that mTORC1 (mTOR complex 1) activation promotes atherogenesis through inhibition of autophagy and increased apoptosis in macrophages. METHODS: Using macrophage-specific Rictor- and mTOR-deficient mice, we now dissect the distinct functions of mTORC2 pathways in atherogenesis. RESULTS: In contrast to the atheroprotective effect seen with blockade of macrophage mTORC1, macrophage-specific mTORC2-deficient mice exhibit an atherogenic phenotype, with larger, more complex lesions and increased cell death. In cultured macrophages, we show that mTORC2 signaling inhibits the FoxO1 (forkhead box protein O1) transcription factor, leading to suppression of proinflammatory pathways, especially the inflammasome/IL (interleukin)-1ß response, a key mediator of vascular inflammation and atherosclerosis. In addition, administration of FoxO1 inhibitors efficiently rescued the proinflammatory response caused by mTORC2 deficiency both in vitro and in vivo. Interestingly, collective deletion of macrophage mTOR, which ablates mTORC1- and mTORC2-dependent pathways, leads to minimal change in plaque size or complexity, reflecting the balanced yet opposing roles of these signaling arms. CONCLUSIONS: Our data provide the first mechanistic details of macrophage mTOR signaling in atherosclerosis and suggest that therapeutic measures aimed at modulating mTOR need to account for its dichotomous functions.


Asunto(s)
Aterosclerosis , Serina-Treonina Quinasas TOR , Ratones , Animales , Diana Mecanicista del Complejo 2 de la Rapamicina , Serina-Treonina Quinasas TOR/metabolismo , Macrófagos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Factores de Transcripción/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo
7.
Nat Commun ; 14(1): 850, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792666

RESUMEN

Sushi, von Willebrand factor type A, EGF and pentraxin domain containing 1 (SVEP1) is an extracellular matrix protein that causally promotes vascular disease and associates with platelet reactivity in humans. Here, using a human genomic and proteomic approach, we identify a high affinity, disease-relevant, and potentially targetable interaction between SVEP1 and the orphan receptor Platelet and Endothelial Aggregation Receptor 1 (PEAR1). This interaction promotes PEAR1 phosphorylation and disease associated AKT/mTOR signaling in vascular cells and platelets. Mice lacking SVEP1 have reduced platelet activation, and exogenous SVEP1 induces PEAR1-dependent activation of platelets. SVEP1 and PEAR1 causally and concordantly relate to platelet phenotypes and cardiovascular disease in humans, as determined by Mendelian Randomization. Targeting this receptor-ligand interaction may be a viable therapeutic strategy to treat or prevent cardiovascular and thrombotic disease.


Asunto(s)
Plaquetas , Proteómica , Humanos , Animales , Ratones , Plaquetas/metabolismo , Ligandos , Receptores de Superficie Celular/metabolismo , Agregación Plaquetaria , Moléculas de Adhesión Celular/metabolismo
8.
Atherosclerosis ; 360: 15-20, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36215801

RESUMEN

BACKGROUND AND AIMS: Sushi, von Willebrand factor type A, EGF pentraxin domain-containing 1 (SVEP1), an extracellular matrix protein, is a human coronary artery disease locus that promotes atherosclerosis. We previously demonstrated that SVEP1 induces vascular smooth muscle cell (VSMC) proliferation and an inflammatory phenotype in the arterial wall to enhance the development of atherosclerotic plaque. The only receptor known to interact with SVEP1 is integrin α9ß1, a cell surface receptor that is expressed by VSMCs and myeloid lineage-derived monocytes and macrophages. Our previous in vitro studies suggested that integrin α9ß1 was necessary for SVEP1-induced VSMC proliferation and inflammation; however, the underlying mechanisms mediated by integrin α9ß1 in these cell types during the development of atherosclerosis remain poorly understood. METHODS AND RESULTS: Here, using cell-specific gene targeting, we investigated the effects of the integrin α9ß1 receptor on VSMCs and myeloid cells in mouse models of atherosclerosis. Interestingly, we found that depleting integrin α9ß1 in either VSMCs or myeloid cells did not affect the formation or complexity of atherosclerotic plaque in vessels after either 8 or 16 weeks of high fat diet feeding. CONCLUSIONS: Our results indicate that integrin α9ß1 in these two cell types does not mediate the in vivo effect of SVEP1 in the development of atherosclerosis. Instead, our results suggest either the presence of other potential receptor(s) or alternative integrin α9ß1-expressing cell types responsible for SVEP1 induced signaling in the development of atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Ratones , Humanos , Animales , Músculo Liso Vascular/metabolismo , Placa Aterosclerótica/metabolismo , Factor de von Willebrand/metabolismo , Factor de Crecimiento Epidérmico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Macrófagos/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proliferación Celular , Células Cultivadas
9.
Sci Transl Med ; 13(586)2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762433

RESUMEN

A low-frequency variant of sushi, von Willebrand factor type A, EGF, and pentraxin domain-containing protein 1 (SVEP1), an extracellular matrix protein, is associated with risk of coronary disease in humans independent of plasma lipids. Despite a robust statistical association, if and how SVEP1 might contribute to atherosclerosis remained unclear. Here, using Mendelian randomization and complementary mouse models, we provide evidence that SVEP1 promotes atherosclerosis in humans and mice and is expressed by vascular smooth muscle cells (VSMCs) within the atherosclerotic plaque. VSMCs also interact with SVEP1, causing proliferation and dysregulation of key differentiation pathways, including integrin and Notch signaling. Fibroblast growth factor receptor transcription increases in VSMCs interacting with SVEP1 and is further increased by the coronary disease-associated SVEP1 variant p.D2702G. These effects ultimately drive inflammation and promote atherosclerosis. Together, our results suggest that VSMC-derived SVEP1 is a proatherogenic factor and support the concept that pharmacological inhibition of SVEP1 should protect against atherosclerosis in humans.


Asunto(s)
Aterosclerosis , Moléculas de Adhesión Celular , Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Animales , Aterosclerosis/genética , Moléculas de Adhesión Celular/genética , Proliferación Celular , Células Cultivadas , Enfermedad de la Arteria Coronaria/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular , Miocitos del Músculo Liso , Placa Aterosclerótica/genética
10.
Exp Mol Med ; 52(9): 1587-1601, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32929220

RESUMEN

Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease characterized by structural deterioration of the aorta caused by inflammation and oxidative stress, leading to aortic dilatation and rupture. Peroxiredoxin 2 (PRDX2), an antioxidant enzyme, has been reported as a potential negative regulator of inflammatory vascular diseases, and it has been identified as a protein that is increased in patients with ruptured AAA compared to patients with nonruptured AAA. In this study, we demonstrated that PRDX2 was a pivotal factor involved in the inhibition of AAA progression. PRDX2 levels were increased in AAA compared with those in normal aortas in both humans and mice. Ultrasound imaging revealed that the loss of PRDX2 accelerated the development of AAA in the early stages and increased AAA incidence in mice infused with angiotensin II (Ang II). Prdx2-/- mice infused with Ang II exhibited increased aortic dilatation and maximal aortic diameter without a change in blood pressure. Structural deterioration of the aortas from Prdx2-/- mice infused with Ang II was associated with increases in the degradation of elastin, oxidative stress, and intramural thrombi caused by microhemorrhages, immature neovessels, and the activation of matrix metalloproteinases compared to that observed in controls. Moreover, an increase in inflammatory responses, including the production of cell adhesion molecules and the accumulation of inflammatory cells and proinflammatory cytokines due to PRDX2 deficiency, accelerated Ang II-induced AAA progression. Our data confirm that PRDX2 plays a role as a negative regulator of the pathological process of AAA and suggest that increasing PRDX2 activity may be a novel strategy for the prevention and treatment of AAA.


Asunto(s)
Angiotensina II/efectos adversos , Aneurisma de la Aorta Abdominal/etiología , Aneurisma de la Aorta Abdominal/patología , Susceptibilidad a Enfermedades , Peroxirredoxinas/deficiencia , Animales , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Biomarcadores , Biopsia , Moléculas de Adhesión Celular/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Modelos Biológicos , Miocitos del Músculo Liso/metabolismo , Peroxirredoxinas/genética , Especies Reactivas de Oxígeno , Ultrasonografía
11.
Circulation ; 142(18): 1736-1751, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883094

RESUMEN

BACKGROUND: Macrophages produce many inflammation-associated molecules, released by matrix metalloproteinases, such as adhesion molecules, and cytokines, as well, which play a crucial role in atherosclerosis. In this context, we investigated the relationship between Ninjurin-1 (Ninj1 [nerve injury-induced protein]), a novel matrix metalloproteinase 9 substrate, expression, and atherosclerosis progression. METHODS: Ninj1 expression and atherosclerosis progression were assessed in atherosclerotic aortic tissue and serum samples from patients with coronary artery disease and healthy controls, and atheroprone apolipoprotein e-deficient (Apoe-/-) and wild-type mice, as well. Apoe-/- mice lacking systemic Ninj1 expression (Ninj1-/-Apoe-/-) were generated to assess the functional effects of Ninj1. Bone marrow transplantation was also used to generate low-density lipoprotein receptor-deficient (Ldlr-/-) mice that lack Ninj1 specifically in bone marrow-derived cells. Mice were fed a Western diet for 5 to 23 weeks, and atherosclerotic lesions were investigated. The anti-inflammatory role of Ninj1 was verified by treating macrophages and mice with the peptides Ninj11-56 (ML56) and Ninj126-37 (PN12), which mimic the soluble form of Ninj1 (sNinj1). RESULTS: Our in vivo results conclusively showed a correlation between Ninj1 expression in aortic macrophages and the extent of human and mouse atherosclerotic lesions. Ninj1-deficient macrophages promoted proinflammatory gene expression by activating mitogen-activated protein kinase and inhibiting the phosphoinositide 3-kinase/Akt signaling pathway. Whole-body and bone marrow-specific Ninj1 deficiencies significantly increased monocyte recruitment and macrophage accumulation in atherosclerotic lesions through elevated macrophage-mediated inflammation. Macrophage Ninj1 was directly cleaved by matrix metalloproteinase 9 to generate a soluble form that exhibited antiatherosclerotic effects, as assessed in vitro and in vivo. Treatment with the sNinj1-mimetic peptides, ML56 and PN12, reduced proinflammatory gene expression in human and mouse classically activated macrophages, thereby attenuating monocyte transendothelial migration. Moreover, continuous administration of mPN12 alleviated atherosclerosis by inhibiting the enhanced monocyte recruitment and inflammation characteristics of this disorder in mice, regardless of the presence of Ninj1. CONCLUSIONS: Ninj1 is a novel matrix metalloproteinase 9 substrate in macrophages, and sNinj1 is a secreted atheroprotective protein that regulates macrophage inflammation and monocyte recruitment in atherosclerosis. Moreover, sNinj1-mediated anti-inflammatory effects are conserved in human macrophages and likely contribute to human atherosclerosis.


Asunto(s)
Antiinflamatorios/farmacología , Aterosclerosis , Moléculas de Adhesión Celular Neuronal , Macrófagos/metabolismo , Factores de Crecimiento Nervioso , Peptidomiméticos/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Moléculas de Adhesión Celular Neuronal/farmacología , Femenino , Masculino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Noqueados para ApoE , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética
12.
Cell Rep ; 30(12): 4124-4136.e5, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209473

RESUMEN

CD137, a potent costimulatory receptor for CD8+ T cells, is expressed in various non-T cells, but little is known about its regulatory functions in these cells. In this study, we show that CD137 signaling, specifically in intestinal CD11b-CD103+ dendritic cells (DCs), restricts acute colitis progression. Mechanistically, CD137 engagement activates TAK1 and subsequently stimulates the AMPK-PGC-1α axis to enhance expression of the Aldh1a2 gene encoding the retinoic acid (RA) metabolizing enzyme RALDH2. RA can act on CD11b+CD103- DCs and induce SOCS3 expression, which, in turn, suppresses p38MAPK activation and interleukin-23 (IL-23) production. Administration of RA in DC-specific CD137-/- mice represses IL-23-producing CD11b+CD103- DCs and TH17 cells, indicating that RA is a major inhibitory effector molecule against intestinal CD11b+CD103- DCs. Additionally, the therapeutic effect of the anti-CD137 antibody is abrogated in DC-specific CD137-/- mice. Taken together, our results define a mechanism of paracrine immunoregulation operating between adjacent DC subsets in the intestine.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Antígenos CD/metabolismo , Antígeno CD11b/metabolismo , Colitis/patología , Células Dendríticas/metabolismo , Cadenas alfa de Integrinas/metabolismo , Transducción de Señal , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Enfermedad Aguda , Adenilato Quinasa/metabolismo , Animales , Apoptosis , Diferenciación Celular , Colitis/inmunología , Susceptibilidad a Enfermedades , Factores de Transcripción Forkhead/metabolismo , Intestinos/patología , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones Endogámicos C57BL , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Linfocitos T Reguladores/inmunología , Células Th17/citología , Tretinoina/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/deficiencia
13.
Autophagy ; 14(1): 120-133, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28605287

RESUMEN

Oxidative stress activates macroautophagy/autophagy and contributes to atherogenesis via lipophagic flux, a form of lipid removal by autophagy. However, it is not known exactly how endogenous antioxidant enzymes are involved in lipophagic flux. Here, we demonstrate that the antioxidant PRDX1 (peroxiredoxin 1) has a crucial role in the maintenance of lipophagic flux in macrophages. PRDX1 is more highly expressed than other antioxidant enzymes in monocytes and macrophages. We determined that Prdx1 deficiency induced excessive oxidative stress and impaired maintenance of autophagic flux in macrophages. Prdx1-deficient macrophages had higher intracellular cholesterol mass and lower cholesterol efflux compared with wild type. This perturbation in cholesterol homeostasis was due to impaired lipophagic cholesterol hydrolysis caused by excessive oxidative stress, resulting in the inhibition of free cholesterol formation and the reduction of NR1H3 (nuclear receptor subfamily 1, group H, member 3) activity. Notably, impairment of both lipophagic flux and cholesterol efflux was restored by the 2-Cys PRDX-mimics ebselen and gliotoxin. Consistent with this observation, apoe -/- mice transplanted with bone marrow from prdx1-/-apoe-/- mice had increased plaque formation compared with apoe-/- BM-transplanted recipients. This study reveals that PRDX1 is crucial to regulating lipophagic flux and maintaining macrophage cholesterol homeostasis against oxidative stress. We suggest that PRDX1-dependent control of oxidative stress may provide a strategy for treating atherosclerosis and autophagy-related human diseases.


Asunto(s)
Autofagia , Colesterol/metabolismo , Macrófagos/metabolismo , Estrés Oxidativo , Peroxirredoxinas/deficiencia , Animales , Aterosclerosis/enzimología , Células Cultivadas , Humanos , Receptores X del Hígado/metabolismo , Ratones , Ratones Noqueados , Peroxirredoxinas/química , Peroxirredoxinas/genética , Peroxirredoxinas/uso terapéutico
15.
Korean Circ J ; 46(6): 753-761, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27826331

RESUMEN

The tumor necrosis factor receptor superfamily (TNFRSF), which includes CD40, LIGHT, and OX40, plays important roles in the initiation and progression of cardiovascular diseases, involving atherosclerosis. CD137, a member of TNFRSF, is a well-known activation-induced T cell co-stimulatory molecule and has been reported to be expressed in human atherosclerotic plaque lesions, and plays pivotal roles in mediating disease processes. In this review, we focus on and summarize recent advances in mouse studies on the involvement of CD137 signaling in the pathogenesis and plaque stability of atherosclerosis, thereby highlighting a valuable therapeutic target in atherosclerosis.

16.
Cell Metab ; 23(5): 852-66, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27166946

RESUMEN

Plasmacytoid dendritic cells (pDCs) are unique bone-marrow-derived cells that produce large amounts of type I interferon in response to microbial stimulation. Furthermore, pDCs also promote T cell tolerance in sterile-inflammation conditions. However, the immunomodulatory role of aortic pDCs in atherosclerosis has been poorly understood. Here, we identified functional mouse and human pDCs in the aortic intima and showed that selective, inducible pDC depletion in mice exacerbates atherosclerosis. Aortic pDCs expressed CCR9 and indoleamine 2,3-dioxygenase 1 (IDO-1), an enzyme involved in driving the generation of regulatory T cells (Tregs). As a consequence, loss of pDCs resulted in decreased numbers of Tregs and reduced IL-10 levels in the aorta. Moreover, antigen presentation by pDCs expanded antigen-specific Tregs in the atherosclerotic aorta. Notably, Tregs ablation affected pDC homeostasis in diseased aorta. Accordingly, pDCs in human atherosclerotic aortas colocalized with Tregs. Collectively, we identified a mechanism of atheroprotection mediated by tolerogenic aortic pDCs.


Asunto(s)
Aorta/patología , Aterosclerosis/enzimología , Aterosclerosis/prevención & control , Células Dendríticas/enzimología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Anticuerpos/farmacología , Aterosclerosis/inmunología , Aterosclerosis/patología , Médula Ósea/patología , Recuento de Células , Proliferación Celular/efectos de los fármacos , Epítopos , Homeostasis/efectos de los fármacos , Humanos , Interferón Tipo I/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Receptores de LDL/metabolismo , Factores de Tiempo , Receptor Toll-Like 9/metabolismo , Tirosina Quinasa 3 Similar a fms/metabolismo
18.
FASEB J ; 28(11): 4779-91, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25059229

RESUMEN

CD137 (4-1BB), a member of the tumor necrosis factor receptor superfamily, has been reported to be expressed in atherosclerotic plaques, and to promote lesion formation. However, the role of CD137 in mediating atherosclerotic plaque stability and the possible underlying molecular and cellular mechanisms are poorly understood. Here, apolipoprotein E-deficient (ApoE(-/-)) and CD137-deficient ApoE(-/-) (ApoE(-/-)CD137(-/-)) mice fed a chow diet for 66 wk were used. CD137 induces plaque instability, which is characterized by increased plaque necrosis, decreased collagen content, decreased vascular smooth muscle cell (VSMC) content, and increased macrophage infiltration. CD137 also increases the infiltration of effector T (Teff) cells into plaque lesion sites, resulting in increased interferon-γ (IFN-γ) expression. Interestingly, Teff-cell-derived IFN-γ inhibits collagen synthesis in atherosclerotic plaques. Furthermore, CD137 activation increases the apoptosis of VSMCs, possibly by decreasing the antiapoptotic regulator, Bcl-2, and subsequently up-regulating cleaved caspase-3. In macrophages, activation of CD137 signaling boosted the oxidized low density lipoprotein-induced expression of matrix metalloproteinase 9 via the p38 mitogen-activated protein kinase and extracellular signal-regulated kinase1/2 signaling pathways. In summary, activation of CD137 signaling decreases the stability of advanced atherosclerotic plaques via its combined effects on Teff cells, VSMCs, and macrophages.


Asunto(s)
Ligando 4-1BB/inmunología , Aterosclerosis/metabolismo , Hiperlipidemias/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/metabolismo , Linfocitos T/metabolismo , Animales , Apoptosis/efectos de los fármacos , Aterosclerosis/inmunología , Interferón gamma/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología
19.
Nat Commun ; 5: 4410, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25022542

RESUMEN

Hyperlipidemia is a well-recognized risk factor for atherosclerosis and can be regulated by adipokines. Expression of the adipokine resistin-like molecule alpha (Retnla) is regulated by food intake; whether Retnla has a role in the pathogenesis of hyperlipidemia and atherosclerosis is unknown. Here we report that Retnla has a cholesterol-lowering effect and protects against atherosclerosis in low-density lipoprotein receptor-deficient mice. On a high-fat diet, Retnla deficiency promotes hypercholesterolaemia and atherosclerosis, whereas Retnla overexpression reverses these effects and improves the serum lipoprotein profile, with decreased cholesterol in the very low-density lipoprotein fraction concomitant with reduced serum apolipoprotein B levels. We show that Retnla upregulates cholesterol-7-α-hydroxylase, a key hepatic enzyme in the cholesterol catabolic pathway, through induction of its transcriptional activator liver receptor homologue-1, leading to increased excretion of cholesterol in the form of bile acids. These findings define Retnla as a novel therapeutic target for treating hypercholesterolaemia and atherosclerosis.


Asunto(s)
Colesterol/metabolismo , Hiperlipidemias/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Tejido Adiposo/metabolismo , Animales , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Femenino , Homeostasis/genética , Homeostasis/fisiología , Hiperlipidemias/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Ratones , Ratones Noqueados , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
20.
Atherosclerosis ; 226(2): 356-63, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23245509

RESUMEN

OBJECTIVE: Blocking agents targeting cell adhesion molecules have been developed to prevent cardiovascular diseases such as atherosclerosis, whereas relatively little attention has been paid to the therapeutic potential of vascular cell adhesion molecule (VCAM)-1 as an inflammatory disease target. Two novel, fully human antibodies, H6 and 7H, against human VCAM-1 (hVCAM-1) were developed and tested to validate the hypothesis that blocking VCAM-1 ameliorates atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) mice. METHODS AND RESULTS: Treatment with H6 or 7H effectively inhibited VCAM-1 adhesion to inflammatory cells, and reduced RhoA activation and the production of reactive oxygen species in human umbilical cord vascular endothelial cells. As 7H showed binding affinity to both murine VCAM-1 (mVCAM-1) and hVCAM-1, the therapeutic effects of 7H in ApoE(-/-) mice were tested. After confirming specific in vivo binding activity of 7H to mVCAM-1, we showed that administering 7H resulted in significantly ameliorated plaque formation compared to administering a control antibody in ApoE(-/-) mice fed a Western diet for 12 weeks. Also, 7H treatment significantly reduced infiltration of CD45(+) cells into plaques and reduced inflammation and improved plaque stability. CONCLUSION: These results indicate that the anti-VCAM-1 antibody attenuates atherosclerosis in ApoE(-/-) mice, improves plaque inflammation and stability as well as inhibiting the adhesion of inflammatory cell, and suggest that blocking VCAM-1 with a monoclonal antibody may be an effective means of anti-atherosclerotic therapy.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Molécula 1 de Adhesión Celular Vascular/inmunología , Animales , Apolipoproteínas E/deficiencia , Adhesión Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/tratamiento farmacológico , Masculino , Ratones , Placa Aterosclerótica/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA