Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125239, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39383546

RESUMEN

Surface-enhanced Raman scattering (SERS) spectroscopy is a highly specific and ultrasensitive analytical technique; thus, it is an ideal candidate for therapeutic drug monitoring. However, SERS measurements of drugs in a sample are inevitably affected by the environment. In this study, we synthesized ZrO2 nanoparticles (NPs) doped with the first group of elements (Li, Na, and K) in the main block and evaluated their SERS performance. The results showed that Li-ion doping could significantly enhance the SERS effect, and the degree of enhancement depended on the type and concentration of the doped ions. Compared with the highly stable ZrO2, Li ion-doped ZrO2 (Li-ZrO2) exhibited a significant increase in SERS activity. In particular, 1 % Li-ZrO2 NPs exhibited excellent SERS enhancement with an enhancement factor (EF) of 2.60 × 104, which was attributed to the decreased band gap and improved the charge transfer (CT) process after Li ion doping. The adsorption capacity of the Li-ZrO2 NPs for norfloxacin (NOR) molecules was gradually saturated with time. In addition, both acidic and alkaline conditions were unfavorable for NOR detection by the substrate. The SERS intensity exhibited a linear relationship within the NOR concentration range of 10-3-10-6 mol/L, and approximately 97.51 % of the active ingredients were detected, with a competitive detection limit of 10-6 mol/L. Furthermore, NOR detection is cost-effective and time-efficient, and the results of our study can aid in the research process and support practical applications. The proposed study provides a guidance for improving the SERS activity of semiconductors for sensing.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125266, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39413607

RESUMEN

Three-dimensional (3D) Na2Ti3O7 flower (NTF) systems were synthesized, followed by sputter coating with silver (Ag) nanoparticles to increase surface-enhanced Raman scattering (SERS) activity. By varying the sputtering time, SERS activity of the Ag-decorated NTF (NTF-Ag) structures was optimized. Furthermore, the theoretical evidence from finite difference time domain (FDTD) simulations confirmed that an appropriate density of Ag particles increased the electromagnetic field contribution. The electromagnetic field contribution is high because the special petal-shaped structure can promote multiple reflections and scattering, thus providing efficient resonance absorption for charge-transfer (CT) and exciton enhancements. Highly SERS-active NTF-Ag composites were developed and exploited for the detection of malachite green (MG), a model contaminant in the food industry. The detection limit of this method for MG reached 3.78 × 10-10 M, with a standard deviation of homogeneity of 6.83 %. This method was successfully applied to detect MG on crucian carp skin, and it showed high recovery, indicating that it can serve as a practical method for MG evaluation. All results demonstrated that the prepared NTF-Ag composite has great potential in the application of SERS-based contamination assessment in the food industry.

3.
Angew Chem Int Ed Engl ; : e202408960, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212257

RESUMEN

Phosphonic acid (PA) self-assembled molecules have recently emerged as efficient hole-extraction layers (HELs) for organic solar cells (OSCs). However, the structural effects of PAs on their self-assembly behaviors on indium tin oxide (ITO) and thus photovoltaic performance remain obscure. Herein, we present a novel class of PAs, namely "non-fused ring dipodal phosphonic acids" (NFR-DPAs), featuring simple and malleable non-fused ring backbones and dipodal phosphonic acid anchoring groups. The efficacy of configurational isomerism in modulating the photoelectronic properties and switching molecular orientation of PAs atop electrodes results in distinct substrate surface energy and electronic characteristics. The NFR-DPA with linear (C2h symmetry) and brominated backbone exhibits favorable face-on orientation and enhanced work function modification capability compared to its angular (C2v symmetry) and non-brominated counterparts. This makes it versatile HELs in mitigating interfacial resistance for energy barrier-free hole collection, and affording optimal active layer morphology, which results in an impressive efficiency of 19.11 % with a low voltage loss of 0.52 V for binary OSC devices and an excellent efficiency of 19.66 % for ternary OSC devices. This study presents a new dimension to design PA-based HELs for high-performance OSCs.

4.
Anal Bioanal Chem ; 416(24): 5295-5302, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098925

RESUMEN

Currently, research in the development of high-performance sensing platforms has increased to fulfill the needs of analysis and detection. In this study, we developed a novel type of surface-enhanced Raman scattering (SERS) chip composed of a covalent organic framework (COF)-silver nanoparticles (AgNPs) nanocomposite, and this nanocomposite was fabricated by a one-step method of ultrasonically mixing the obtained COF and AgNPs. The fabricated chip exhibited high sensitivity and repeatable SERS effects. Practical application results showed that the chip was highly sensitive and reliable and capable of detecting DNA bases (adenine) to fit an equation in the range from 0.01 pM to 1 nM, with an R-square of 0.97253 and a detection limit of ~0.026 pM (signal-to-noise ratio (S/N) = 3). Therefore, the proposed SERS system has potential applications in biological assays.


Asunto(s)
ADN , Límite de Detección , Nanopartículas del Metal , Plata , Espectrometría Raman , Plata/química , Espectrometría Raman/métodos , Nanopartículas del Metal/química , ADN/química , ADN/análisis , Estructuras Metalorgánicas/química , Adenina/química , Adenina/análisis
5.
Appl Spectrosc ; : 37028241256397, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38835153

RESUMEN

This second of the two-part series of a comprehensive survey review provides the diverse applications of two-dimensional correlation spectroscopy (2D-COS) covering different probes, perturbations, and systems in the last two years. Infrared spectroscopy has maintained its top popularity in 2D-COS over the past two years. Fluorescence spectroscopy is the second most frequently used analytical method, which has been heavily applied to the analysis of heavy metal binding, environmental, and solution systems. Various other analytical methods including laser-induced breakdown spectroscopy, dynamic mechanical analysis, differential scanning calorimetry, capillary electrophoresis, seismologic, and so on, have also been reported. In the last two years, concentration, composition, and pH are the main effects of perturbation used in the 2D-COS fields, as well as temperature. Environmental science is especially heavily studied using 2D-COS. This comprehensive survey review shows that 2D-COS undergoes continuous evolution and growth, marked by novel developments and successful applications across diverse scientific fields.

6.
Appl Spectrosc ; : 37028241255393, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872353

RESUMEN

This first of the two-part series of the comprehensive survey review on the progress of the two-dimensional correlation spectroscopy (2D-COS) field during the period 2021-2022, covers books, reviews, tutorials, novel concepts and theories, and patent applications that appeared in the last two years, as well as some inappropriate use or citations of 2D-COS. The overall trend clearly shows that 2D-COS is continually growing and evolving with notable new developments. The technique is well recognized as a powerful analytical tool that provides deep insights into systems in many science fields.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124382, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38701579

RESUMEN

MXene sheets with the unique electrical and optical properties show the excellent potential for surface-enhanced Raman spectroscopy (SERS) applications. In this study, we chose Ti3C2Tx, a type of MXene, to decorate silver nanoparticles (Ag NPs) on the ultrathin two-dimensional (2D) MXene sheets. The designed Ag-MXene substrates with SERS activity showed high sensitivity, high stability, and reproducibility. The SERS signal was enhanced by the synergistic contribution of both charge-transfer (CT) and surface plasmon resonance (SPR) involving the Ag NPs and the MXene sheets. Due to the strong interaction between the probe molecules and Ag NPs which provided the nanoscale gap, the substrate exhibited remarkable SERS performance. A novel experimental strategy was developed to facilitate the controlled synthesis of noble metal NPs and MXene sheets and provide insights for further improving the practical applications of these materials in SERS detection.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124354, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38678842

RESUMEN

A combination of multiple materials effectively improves and enhances the performance of the materials. Thus, a gold-silver@cuprous oxide (Au-Ag@Cu2O)-reduced graphene oxide (rGO) structure was designed and fabricated. We decorated the Au nanoparticles (NPs) on the Ag@Cu2O-rGO composite surface by a redox reaction to form a Au-Ag@Cu2O-rGO structure with two noble metals attached to a Cu2O semiconductor. A comparable Au-Ag@Cu2O structure was also fabricated. After decorating Au NPs into the Ag@Cu2O-rGO composite, the Au-Ag@Cu2O composite structure was loosened, and the surface and interior of the Cu2O shell were decorated with Au and Ag NPs. Moreover, the addition of Au NPs resulted in a proper surface plasmon resonance effect and a significant broadening of the absorption range. The loose structure increased the adsorption of the probe molecules, which increased the surface-enhanced Raman scattering (SERS) intensity. In addition, the fabricated Au-Ag@Cu2O-rGO exhibited excellent catalytic reduction of methylene blue (MB) with sodium borohydride (NaBH4). Therefore, the SERS-based monitoring of the MB degradation was obviously improved.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123892, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38252985

RESUMEN

π-Conjugated organic semiconductors with tunable electronic structures are new prospective active substrate materials for surface-enhanced Raman scattering (SERS). However, observing higher SERS activity when using organic semiconductors as substrates could be difficult because there is no plasmonic effect of hot electrons. Here, we designed a Ag-reduced graphene oxide (rGO) structure, introduced it into a poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) solution, and spin-coated the solution to obtain a Ag-rGO/PEDOT:PSS (ARPP) film. Our analyses demonstrate that the introduction of this Ag-rGO structure can not only enhance the electromagnetic field effect based on plasmon resonance but also improve the interaction between the target molecule and the substrate in the ARPP film. This innovative approach not only improves the SERS activity of π-conjugated organic polymers but also provides novel ideas for the preparation of other organic semiconductor-based SERS substrates.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123947, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38280244

RESUMEN

The selective enhancement mechanism in surface-enhanced Raman scattering (SERS) is demonstrated. Two different types of single nanoparticles (Au nanosphere and Au nanorod) were used to investigate the role of the localized surface plasmon resonance (LSPR) in SERS spectra by using the two-trace two-dimensional (2T2D) correlation spectroscopy. The SERS intensities of three probe molecules, 4-mercaptobenzoic acid (4-MBA), 4-aminothiophenol (4-ATP), and 4-bromobenzenethiol (4-BBT), respectively, were enhanced but slightly different when adsorbed on Au nanospheres and Au nanorods. 2T2D correlation SERS spectra clearly showed that even with the same shape of Au nanoparticles, the main factors influencing the SERS enhancement can vary depending on the specific type of SERS tags used. Such subtle difference could not be clearly identified by the conventional spectral analysis. This result sheds light on potential applications of 2T2D correlation spectroscopy. For 4-MBA molecules, the a1 and b2 modes are mainly affected by the Au nanospheres and Au nanorods. For 4-ATP molecules, the a1 and b2 modes related to C-S stretching combined with C-C stretching band are mainly affected by Au nanorods and Au nanospheres. For 4-BBT molecules, the a1 and b2 modes of C-C (aromatic ring) stretching band are mainly affected by Au nanorods and Au nanospheres. This study offers valuable insights into the relationship between nanoparticle shape and SERS enhancement.

11.
Biomacromolecules ; 25(1): 379-387, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38108296

RESUMEN

Mussels are marine organisms that are capable of constructing an underwater adhesion between their bodies and rigid structures. It is well known that mussels achieve underwater adhesion through the presence of mussel adhesive proteins (MAPs) that contain high levels of 3,4-dihydroxyphenylalanine (DOPA). Although the extraordinary underwater adhesive properties of mussels are attributed to DOPA, its capacity to play a dual role in surface adhesion and internal cohesion is inherently limited. However, mussels employ a combination of chemical moieties, not just DOPA, along with anatomical components, such as plaque and byssus, in underwater adhesion. This also involves junction proteins that connect the plaque and byssus. In this study, a novel hybrid MAP was bioengineered via the fusion of the plaque protein (foot protein type 1) and the histidine-rich domain of the junction protein (foot protein type 4). To achieve direct adhesion underwater, the adhesive should maintain surface adhesion without disintegrating. Notably, the histidine-Zn-coordinated hybrid MAP hydrogel maintained a high surface adhesion ability even after cross-linking because of the preservation of its unoxidized and non-cross-linked DOPA moieties. The formulated adhesive hydrogel system based on the bioengineered hybrid MAP exhibited self-healing properties, owing to the reversible metal coordination bonds. The developed adhesive hydrogel exhibits outstanding levels of bulk adhesion in underwater environments, highlighting its potential as an effective adhesive biomaterial. Therefore, the introduction of histidine-rich domains into MAPs may be applied in various studies to formulate mussel-inspired adhesives with self-healing properties and to fully utilize the adhesive ability of DOPA.


Asunto(s)
Adhesivos , Bivalvos , Animales , Adhesivos/química , Histidina , Zinc , Hidrogeles , Proteínas/química , Dihidroxifenilalanina/química , Bivalvos/metabolismo
12.
Analyst ; 149(1): 11-28, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38051259

RESUMEN

Surface-enhanced Raman scattering (SERS) is a very important tool in vibrational spectroscopy. The coupling of nanomaterials induces local surface plasmon resonance (LSPR), which contributes greatly to SERS. Due to its remarkable sensitivity in trace detection, SERS has gained prominence in the fields of catalysis, biosensors, drug tracking, and optoelectronic devices. SERS activity is believed to be closely related to the LSPR and charge transfer (CT) of the material. Noble metal nanostructures have been commonly used as SERS-active substrates due to their strong local electric fields and relatively mature preparation, application, and enhancement mechanisms. In recent years, SERS research based on semiconductor materials has attracted significant attention because semiconductor materials have advantages such as repeatable preparation, simple pretreatment, stable SERS spectra and superior biocompatibility, stability, and reproducibility. Semiconductor-based SERS has the potential to enrich SERS theory and applications. Thus, the development of semiconductor materials will introduce a new epoch for SERS-based research. In this review, we outline the two main kinds of semiconductor SERS-active substrates: inorganic and organic semiconductor SERS-active substrates. We also provide an overview of the SERS mechanism for different kinds of materials and SERS-based applications.

13.
Molecules ; 28(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38067581

RESUMEN

In this study, mineral components extracted during the desalination process were concentrated and dried, and then identified using energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), infrared (IR), and Raman spectroscopy. For detailed identification, two-dimensional correlation spectroscopy (2D-COS) was also applied to the XRD patterns, IR spectra, and Raman spectra of the minerals obtained from each desalination step. The EDS results confirm the presence of seawater minerals rich in Na+ ions in the first and second extracts, Ca2+ ions are present only in these stages, and Mg2+ ions are abundant in the third and final extracts. The presence of NaCl and MgSO4 minerals in the first to third and final extracts, respectively, was confirmed using XRD patterns. From the IR and Raman spectra, we found that the degree of hydration of SO42--related extracts decreased as seawater underwent desalination. Furthermore, 2D-COS provides information about the changes in the extracts obtained from the first to final stage. Heterospectral XRD and Raman 2D-COS provides clear assignments for Raman spectra. The use of 2D-COS helps to understand the characteristics of seawater extracts during the desalination process, and provides a better understanding of chemical and structural adaptations within the extract. As a result, this method contributes to an improved understanding of the desalination process and final products.

14.
Nanoscale ; 15(40): 16287-16298, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37721019

RESUMEN

Na2Ti3O7 (NTO) is recognized as an authenticated promising photocatalyst and surface-enhanced Raman scattering (SERS) active material, although its performance is limited by its high carrier recombination rate, wide band gap and inadequate utilization of visible light. In this study, to solve these issues, sea urchin-shaped NTO nanowires directly grown on a substrate were fabricated, and then Ag nanoparticles were decorated on NTO nanowires using sputtering equipment. The as-prepared Ag-NTO substrates exhibited different morphologies and high SERS activity, which was confirmed by finite-difference time-domain (FDTD) simulations, showing that appropriate Ag decoration can bring more nanogaps and thus enhance the electromagnetic field (EM) contribution. We visualized the charge transfer (CT) mechanism in SERS and further investigated the catalytic hydrogen production process similarly induced by photogenerated CT. The optimal SERS substrate (Ag-NTO-3) was adopted to verify the photocatalytic hydrogen evolution (PHE) activity, and the hydrogen evolution rate of Ag-NTO-3 was 106.7 µmol h-1 (twice that of pristine NTO). Photoelectrochemical measurements and photoluminescence (PL) analysis were used to elucidate the potential enhancement mechanisms for the photocatalytic performance and CT process. This study can provide a valuable reference for performance and mechanism studies of SERS substrates and photocatalysts.

15.
J Mater Chem B ; 11(29): 6961-6974, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37395058

RESUMEN

To enhance the efficacy of photothermal therapy (PTT) at tumor sites, we designed a reactive oxygen species (ROS)-responsive gold nanoparticle (AuNP)-based nanosystem in which azide-decorated AuNPs (N3@AuNPs) and diselenide-coated alkyne-decorated AuNPs (Se/Ak@AuNPs) were separately prepared for selective clicking into nanoclusters when exposed to ROS. Se/Ak@AuNPs were dual-functionalized with alkyne moieties and diselenide linkers embedded in a long chain of polyethylene glycol (PEG) to enable the alkyne moieties of Se/Ak@AuNPs to be inaccessible to the azide moieties of N3@AuNPs owing to steric hindrance. At tumor sites where the ROS level is elevated due to the increased metabolic activity, cellular receptor signaling, mitochondrial dysfunction, and oncogene activity, the diselenide linkers were cleaved, leading to the liberation of the long PEG chains tethered to AuNPs, and the alkyne moieties could be recognized by the surrounding azide moieties to generate a click reaction. The clicked AuNPs formed clustered nanoparticles with increased size. Upon 808 nm laser irradiation, these large clusters of AuNPs significantly enhanced the photothermal conversion efficiency compared with that of isolated AuNPs. In vitro studies revealed that the AuNP clusters exhibited a noticeably higher apoptosis rate than AuNPs. Therefore, ROS-responsive clicked AuNP clusters can be a potential tool for PTT enhancement in cancer treatment.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/farmacología , Especies Reactivas de Oxígeno , Terapia Fototérmica , Azidas
16.
Angew Chem Int Ed Engl ; 62(34): e202306709, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37328756

RESUMEN

π-Conjugated organic semiconductors are promising materials for surface-enhanced Raman scattering (SERS)-active substrates based on the tunability of electronic structures and molecular orbitals. Herein, we investigate the effect of the temperature-mediated resonance-structure transitions of poly(3,4-ethylenedioxythiophene) (PEDOT) in poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT : PSS) films on the interactions between substrate and probe molecules, thereby affecting the SERS activity. Absorption spectroscopy and density functional theory calculations show that this effect occurs mainly due to delocalization of the electron distribution in molecular orbitals, effectively promoting the charge transfer between the semiconductor and probe molecules. In this work, we investigate for the first time the effect of electron delocalization in molecular orbitals on SERS activity, which will provide new design ideas for the development of highly sensitive SERS substrates.

17.
Biosens Bioelectron ; 234: 115366, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37148802

RESUMEN

Due to their pivotal roles in many biological functions, cell surface proteins (CSPs) are often used for cancer prognosis, as evidenced by a number of studies that have reported significant changes in the expression levels of specific surface proteins depending on the stage of tumorigenesis and selection/variety of reprogrammed cells during cell fate conversion. Current CSP detection strategies suffer from poor selectivity and lack the ability for in situ analysis but maintain the spatial information between cells. Here, we have fabricated nanoprobes for surface-enhanced Raman scattering (SERS) immunoassays by conjugating a specific antibody onto silica-coated gold nanoparticles incorporating an individual Raman reporter (Au-tag@SiO2-Ab NPs) for highly sensitive and selective in situ detection in different types of cells. When multiple HEK293 cell lines stably expressing different levels of the CSP, ACE2, were investigated by the SERS immunoassay, we demonstrated that the level of ACE2 expression in each cell line could be statistically distinguished from that in the other cell lines, indicating the quantitative feature of this biosensing system. When detecting living cells without cell lysis or fixation, as well as fixed cells, the levels of the epithelial CSPs, EpCAM (epithelial cell adhesion molecule) and E-cadherin, were successfully determined using our Au-tag@SiO2-Ab NPs and SERS immunoassay system in a highly selective and quantitative manner without significant cytotoxicity. Hence, our work provides technical insight into the development of a biosensing platform for a variety of biomedical applications, such as cancer metastasis prognosis and the in situ monitoring of stem cell reprogramming and differentiation.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Neoplasias , Humanos , Proteínas de la Membrana , Oro , Dióxido de Silicio , Enzima Convertidora de Angiotensina 2 , Células HEK293 , Espectrometría Raman , Inmunoensayo
18.
ACS Appl Mater Interfaces ; 15(8): 11304-11313, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36790371

RESUMEN

In this work, we cosputtered Ag and ZnSe on a polystyrene template to form a three-dimensional (3D) Ag@ZnSe (x) structure. The 3D surface morphology and material composition that provided abundant "hot spots" were controlled by adjusting the sputtering power of the ZnSe, which was confirmed by finite-difference time-domain (FDTD) simulation. The introduction of ZnSe into the noble metal Ag also introduced a charge-transfer (CT) effect into the system, and the CT path was proven with the two-dimensional correlation spectroscopy (2D-COS)-surface-enhanced Raman scattering (SERS) technique. In addition, the substrate exhibited excellent catalytic activity due to the CT effect. The catalyzed degradation of malachite green (MG) was due to the CT effect in the system, and the catalytic process was successfully monitored by in situ SERS. Most importantly, the catalytic degradation by Ag@ZnSe (x) with different parameters was proportional to the degree of CT (ρCT). The SERS and catalytic mechanisms were analyzed in depth with the 2D-COS-SERS technique, which was also useful in verifying the CT process. The catalytic sites for MG were successfully monitored with the 2D-COS-SERS technique. This study provides a reference for studies of the synergistic effects of the electromagnetic mechanism and CT, as well as a new perspective on photocatalysis with dye molecules and monitoring of the catalytic processes.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 121995, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36283206

RESUMEN

The Ag and MoO3 layer-by-layer sputtering method was employed to fabricate Ag/MoO3 coated on a polystyrene (PS) array (Ag/MoO3@PS), which exhibited excellent surface-enhanced Raman scattering (SERS) activity. The thickness of the MoO3 layer was controlled by changing the sputtering power. The SERS intensity of 4-aminothiophenol (PATP) on Ag/MoO3@PS with a 2 nm thickness of the MoO3 layer was comparable to that on pure Ag coated on the PS array (Ag@PS). This is possible because hot electrons were injected from Ag into the MoO3 layer to enhance the photocatalyst reaction; thus, the SERS spectra of coupled PATP were obtained. The transport of hot electrons rapidly decayed and was blocked with increasing thickness of the MoO3 layer from 2 nm to 9 nm. Thus, the SERS intensity decreased, and interestingly, the b2 mode of PATP decreased and nearly disappeared. This study provides new insight into the control of hot electron reduction for catalytic reduction process monitoring.

20.
Chemistry ; 29(10): e202203009, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36464650

RESUMEN

A π-extended, diaza-triphenylene embedded, mono-anionic corrole analogue and its NiII complex were synthesized from a diaza-triphenylene precursor, which was obtained from a double one-carbon insertion into a naphthobipyrrole diester. Following conversion to the corresponding activated diol and acid-catalyzed condensation with pyrrole, subsequent reaction with pentafluorobenzaldehyde afforded mono-anionic, π-extended bipyricorrole-like macrocycle. Attempted NiII insertion with Ni(OAc)2 ⋅ 4H2 O resulted an ESR active, NiII bipyricorrole radical complex, which was converted to a stable cationic NiII complex upon treatment with [(Et3 O)+ (SbCl6 )- ]. Both complexes were characterized by 1 H and 13 C NMR, UV/Vis spectroscopy and single crystal X-ray diffraction analysis. The NiII bipyricorrole radical complex is converted to a cationic NiII complex by single-electron reduction using cobaltocene. Both the cationic NiII complex and the radical NiII complex exhibited ligand-centered redox behavior, whereas the NiII remains in the +2 oxidation state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA