Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Front Plant Sci ; 15: 1339559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756966

RESUMEN

Iron- and reactive oxygen species (ROS)-dependent ferroptosis occurs in plant cells. Ca2+ acts as a conserved key mediator to control plant immune responses. Here, we report a novel role of cytoplasmic Ca2+ influx regulating ferroptotic cell death in rice immunity using pharmacological approaches. High Ca2+ influx triggered iron-dependent ROS accumulation, lipid peroxidation, and subsequent hypersensitive response (HR) cell death in rice (Oryza sativa). During Magnaporthe oryzae infection, 14 different Ca2+ influx regulators altered Ca2+, ROS and Fe2+ accumulation, glutathione reductase (GR) expression, glutathione (GSH) depletion and lipid peroxidation, leading to ferroptotic cell death in rice. High Ca2+ levels inhibited the reduction of glutathione isulphide (GSSG) to GSH in vitro. Ca2+ chelation by ethylene glycol-bis (2-aminoethylether)-N, N, N', N'-tetra-acetic acid (EGTA) suppressed apoplastic Ca2+ influx in rice leaf sheaths during infection. Blocking apoplastic Ca2+ influx into the cytoplasm by Ca2+ chelation effectively suppressed Ca2+-mediated iron-dependent ROS accumulation and ferroptotic cell death. By contrast, acibenzolar-S-methyl (ASM), a plant defense activator, significantly enhanced Ca2+ influx, as well as ROS and iron accumulation to trigger ferroptotic cell death in rice. The cytoplasmic Ca2+ influx through calcium-permeable cation channels, including the putative resistosomes, could mediate iron- and ROS-dependent ferroptotic cell death under reduced GR expression levels in rice immune responses.

2.
Front Plant Sci ; 13: 1019669, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36352872

RESUMEN

Ferritin is a ubiquitous iron storage protein that regulates iron homeostasis and oxidative stress in plants. Iron plays an important role in ferroptotic cell death response of rice (Oryza sativa) to Magnaporthe oryzae infection. Here, we report that rice ferritin 2, OsFER2, is required for iron- and reactive oxygen species (ROS)-dependent ferroptotic cell death and defense response against the avirulent M. oryzae INA168. The full-length ferritin OsFER2 and its transit peptide were localized to the chloroplast, the most Fe-rich organelle for photosynthesis. This suggests that the transit peptide acts as a signal peptide for the rice ferritin OsFER2 to move into chloroplasts. OsFER2 expression is involved in rice resistance to M. oryzae infection. OsFER2 knock-out in wild-type rice HY did not induce ROS and ferric ion (Fe3+) accumulation, lipid peroxidation and hypersensitive response (HR) cell death, and also downregulated the defense-related genes OsPAL1, OsPR1-b, OsRbohB, OsNADP-ME2-3, OsMEK2 and OsMPK1, and vacuolar membrane transporter OsVIT2 expression. OsFER2 complementation in ΔOsfer2 knock-out mutants restored ROS and iron accumulation and HR cell death phenotypes during infection. The iron chelator deferoxamine, the lipid-ROS scavenger ferrostatin-1, the actin microfilament polymerization inhibitor cytochalasin E and the redox inhibitor diphenyleneiodonium suppressed ROS and iron accumulation and HR cell death in rice leaf sheaths. However, the small-molecule inducer erastin did not trigger iron-dependent ROS accumulation and HR cell death induction in ΔOsfer2 mutants. These combined results suggest that OsFER2 expression positively regulates iron- and ROS-dependent ferroptotic cell death and defense response in rice-M. oryzae interactions.

3.
Antioxidants (Basel) ; 11(9)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36139868

RESUMEN

Nodule inception (NIN)-like proteins (NLPs) have a central role in nitrate signaling to mediate plant growth and development. Here, we report that OsNLP2 negatively regulates ferroptotic cell death and immune responses in rice during Magnaporthe oryzae infection. OsNLP2 was localized to the plant cell nucleus, suggesting that it acts as a transcription factor. OsNLP2 expression was involved in susceptible disease development. ΔOsnlp2 knockout mutants exhibited reactive oxygen species (ROS) and iron-dependent ferroptotic hypersensitive response (HR) cell death in response to M. oryzae. Treatments with the iron chelator deferoxamine, lipid-ROS scavenger ferrostatin-1, actin polymerization inhibitor cytochalasin A, and NADPH oxidase inhibitor diphenyleneiodonium suppressed the accumulation of ROS and ferric ions, lipid peroxidation, and HR cell death, which ultimately led to successful M. oryzae colonization in ΔOsnlp2 mutants. The loss-of-function of OsNLP2 triggered the expression of defense-related genes including OsPBZ1, OsPIP-3A, OsWRKY104, and OsRbohB in ΔOsnlp2 mutants. ΔOsnlp2 mutants exhibited broad-spectrum, nonspecific resistance to diverse M. oryzae strains. These combined results suggest that OsNLP2 acts as a negative regulator of ferroptotic HR cell death and defense responses in rice, and may be a valuable gene source for molecular breeding of rice with broad-spectrum resistance to blast disease.

4.
Front Plant Sci ; 12: 710794, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408766

RESUMEN

Mitogen-activated protein kinase (MAPK) signaling is required for plant cell death responses to invading microbial pathogens. Iron- and reactive oxygen species (ROS)-dependent ferroptotic cell death occurs in rice (Oryza sativa) during an incompatible rice-Magnaporthe oryzae interaction. Here, we show that rice MAP kinase (OsMEK2 and OsMPK1) signaling cascades are involved in iron- and ROS-dependent ferroptotic cell death responses of rice to M. oryzae infection using OsMEK2 knock-out mutant and OsMEK2 and OsMPK1 overexpression rice plants. The OsMPK1:GFP and OsWRKY90:GFP transcription factor were localized to the nuclei, suggesting that OsMPK1 in the cytoplasm moves into the nuclei to interact with the WRKY90. M. oryzae infection in ΔOsmek2 knock-out plants did not trigger iron and ROS accumulation and lipid peroxidation, and also downregulated OsMPK1, OsWRKY90, OsRbohB, and OsPR-1b expression. However, 35S:OsMEK2 overexpression induced ROS- and iron-dependent cell death in rice. The downstream MAP kinase (OsMPK1) overexpression induced ROS- and iron-dependent ferroptotic cell death response to virulent M. oryzae infection. The small-molecule ferroptosis inhibitor ferrostatin-1 suppressed iron- and ROS-dependent ferroptotic cell death in 35S:OsMPK1 overexpression plants. However, the small-molecule inducer erastin triggered iron- and lipid ROS-dependent, but OsMEK2-independent, ferroptotic cell death during M. oryzae infection. Disease (susceptibility)-related cell death was lipid ROS-dependent, but iron-independent in the ΔOsmek2 knock-out mutant during the late M. oryzae infection stage. These combined results suggest that OsMEK2 and OsMPK1 expression positively regulates iron- and ROS-dependent ferroptotic cell death, and blast disease (susceptibility)-related cell death was ROS-dependent but iron-independent in rice-M. oryzae interactions.

5.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867341

RESUMEN

The reactive oxygen species (ROS) burst is the most common plant immunity mechanism to prevent pathogen infection, although the exact role of ROS in plant immunity has not been fully elucidated. We investigated the expression and translocation of Oryza sativa respiratory burst oxidase homologue B (OsRBOHB) during compatible and incompatible interactions between rice epidermal cells and the pathogenic fungus Pyricularia oryzae (syn. Magnaporthe oryzae). We characterized the functional role of ROS focal accumulation around invading hyphae during P. oryzae infection process using the OsRBOHB inhibitor diphenyleneiodonium (DPI) and the actin filament polymerization inhibitor cytochalasin (Cyt) A. OsRBOHB was strongly induced during incompatible rice-P. oryzae interactions, and newly synthesized OsRBOHB was focally distributed at infection sites. High concentrations of ROS focally accumulated at the infection sites and suppressed effector biotrophy-associated secreted (BAS) proteins BAS4 expression and invasive hyphal growth. DPI and Cyt A abolished ROS focal accumulation and restored P. oryzae effector BAS4 expression. These results suggest that ROS focal accumulation is able to function as an effective immune mechanism that blocks some effectors including BAS4-expression during P. oryzae infection. Disruption of ROS focal accumulation around invading hyphae enables successful P. oryzae colonization of rice cells and disease development.


Asunto(s)
Ascomicetos/fisiología , Proteínas Fúngicas/genética , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Citocalasinas/farmacología , Resistencia a la Enfermedad , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Compuestos Onio/farmacología , Oryza/microbiología , Enfermedades de las Plantas/prevención & control , Inmunidad de la Planta
6.
Plant Physiol ; 179(2): 558-568, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30545904

RESUMEN

Root hairs are important for absorption of nutrients and water from the rhizosphere. The Root Hair Defective-Six Like (RSL) Class II family of transcription factors is expressed preferentially in root hairs and has a conserved role in root hair development in land plants. We functionally characterized the seven members of the RSL Class II subfamily in the rice (Oryza sativa) genome. In root hairs, six of these genes were preferentially expressed and four were strongly expressed. Phenotypic analysis of each mutant revealed that Os07g39940 plays a major role in root hair formation, based on observations of a short root hair phenotype in those mutants. Overexpression (OX) for each of four family members in rice resulted in an increase in the density and length of root hairs. These four members contain a transcription activation domain and are targeted to the nucleus. They interact with rice Root Hairless1 (OsRHL1), a key regulator of root hair development. When heterologously expressed in epidermal cells of Nicotiana benthamiana leaves, OsRHL1 was predominantly localized to the cytoplasm. When coexpressed with each of the four RSL Class II members, however, OsRLH1 was translocated to the nucleus. Transcriptome analysis using Os07g39940-OX plants revealed that 86 genes, including Class III peroxidases, were highly up-regulated. Furthermore, reactive oxygen species levels in the root hairs were increased in Os07g39940-OX plants but were drastically reduced in the os07g39940 and rhl1 mutants. Our results demonstrate that RSL Class II members function as essential regulators of root hair development in rice.


Asunto(s)
Núcleo Celular/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Núcleo Celular/genética , Citoplasma/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , Oryza/genética , Oryza/crecimiento & desarrollo , Epidermis de la Planta/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo
7.
Plant Cell ; 31(1): 189-209, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30563847

RESUMEN

Hypersensitive response (HR) cell death is the most effective plant immune response restricting fungal pathogen invasion. Here, we report that incompatible rice (Oryza sativa) Magnaporthe oryzae interactions induce iron- and reactive oxygen species (ROS)-dependent ferroptotic cell death in rice cells. Ferric ions and ROS (i.e., H2O2) accumulated in tissues undergoing HR cell death of rice leaf sheath tissues during avirulent M. oryzae infection. By contrast, iron did not accumulate in rice cells during virulent M. oryzae infection or treatment with the fungal elicitor chitin. Avirulent M. oryzae infection in ΔOs-nadp-me2-3 mutant rice did not trigger iron and ROS accumulation and suppressed HR cell death, suggesting that NADP-malic enzyme2 is required for ferroptotic cell death in rice. The small-molecule ferroptosis inhibitors deferoxamine, ferrostatin-1, and cytochalasin E and the NADPH oxidase inhibitor diphenyleneiodonium suppressed iron-dependent ROS accumulation and lipid peroxidation to completely attenuate HR cell death in rice sheaths during avirulent M. oryzae infection. By contrast, the small-molecule inducer erastin triggered iron-dependent ROS accumulation and glutathione depletion, which ultimately led to HR cell death in rice in response to virulent M. oryzae These combined results demonstrate that iron- and ROS-dependent signaling cascades are involved in the ferroptotic cell death pathway in rice to disrupt M. oryzae infection.


Asunto(s)
Hierro/metabolismo , Magnaporthe/patogenicidad , Oryza/metabolismo , Oryza/microbiología , Especies Reactivas de Oxígeno/metabolismo , Ciclohexilaminas/farmacología , Citocalasinas/farmacología , Deferoxamina/farmacología , Peroxidación de Lípido/efectos de los fármacos , Fenilendiaminas/farmacología
8.
Mol Cells ; 40(11): 828-836, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29113428

RESUMEN

Eukaryotic cells consist of a complex network of thousands of proteins present in different organelles where organelle-specific cellular processes occur. Identification of the subcellular localization of a protein is important for understanding its potential biochemical functions. In the post-genomic era, localization of unknown proteins is achieved using multiple tools including a fluorescent-tagged protein approach. Several fluorescent-tagged protein organelle markers have been introduced into dicot plants, but its use is still limited in monocot plants. Here, we generated a set of multicolored organelle markers (fluorescent-tagged proteins) based on well-established targeting sequences. We used a series of pGWBs binary vectors to ameliorate localization and co-localization experiments using monocot plants. We constructed different fluorescent-tagged markers to visualize rice cell organelles, i.e., nucleus, plastids, mitochondria, peroxisomes, golgi body, endoplasmic reticulum, plasma membrane, and tonoplast, with four different fluorescent proteins (FPs) (G3GFP, mRFP, YFP, and CFP). Visualization of FP-tagged markers in their respective compartments has been reported for dicot and monocot plants. The comparative localization of the nucleus marker with a nucleus localizing sequence, and the similar, characteristic morphology of mCherry-tagged Arabidopsis organelle markers and our generated organelle markers in onion cells, provide further evidence for the correct subcellular localization of the Oryza sativa (rice) organelle marker. The set of eight different rice organelle markers with four different FPs provides a valuable resource for determining the sub-cellular localization of newly identified proteins, conducting co-localization assays, and generating stable transgenic localization in monocot plants.


Asunto(s)
Marcadores Genéticos , Proteínas Luminiscentes/metabolismo , Orgánulos/genética , Oryza/crecimiento & desarrollo , Biomarcadores/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Clonación Molecular , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Inyecciones a Chorro , Mitocondrias/genética , Mitocondrias/metabolismo , Cebollas/metabolismo , Orgánulos/metabolismo , Oryza/genética , Oryza/metabolismo , Plastidios/genética , Plastidios/metabolismo
9.
Front Plant Sci ; 8: 1687, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29033963

RESUMEN

Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

10.
Mol Cells ; 39(5): 426-38, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27126515

RESUMEN

Plant disease resistance occurs as a hypersensitive response (HR) at the site of attempted pathogen invasion. This specific event is initiated in response to recognition of pathogen-associated molecular pattern (PAMP) and subsequent PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). Both PTI and ETI mechanisms are tightly connected with reactive oxygen species (ROS) production and disease resistance that involves distinct biphasic ROS production as one of its pivotal plant immune responses. This unique oxidative burst is strongly dependent on the resistant cultivars because a monophasic ROS burst is a hallmark of the susceptible cultivars. However, the cause of the differential ROS burst remains unknown. In the study here, we revealed the plausible underlying mechanism of the differential ROS burst through functional understanding of the Magnaporthe oryzae (M. oryzae) AVR effector, AVR-Pii. We performed yeast two-hybrid (Y2H) screening using AVR-Pii as bait and isolated rice NADP-malic enzyme2 (Os-NADP-ME2) as the rice target protein. To our surprise, deletion of the rice Os-NADP-ME2 gene in a resistant rice cultivar disrupted innate immunity against the rice blast fungus. Malic enzyme activity and inhibition studies demonstrated that AVR-Pii proteins specifically inhibit in vitro NADP-ME activity. Overall, we demonstrate that rice blast fungus, M. oryzae attenuates the host ROS burst via AVR-Pii-mediated inhibition of Os-NADP-ME2, which is indispensable in ROS metabolism for the innate immunity of rice. This characterization of the regulation of the host oxidative burst will help to elucidate how the products of AVR genes function associated with virulence of the pathogen.


Asunto(s)
Proteínas Fúngicas/metabolismo , Magnaporthe/metabolismo , Malato Deshidrogenasa/metabolismo , Oryza/enzimología , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Inmunidad Innata , Magnaporthe/inmunología , Magnaporthe/patogenicidad , Malato Deshidrogenasa/genética , Mutagénesis Sitio-Dirigida , Oryza/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
11.
Methods Mol Biol ; 1171: 195-216, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24908130

RESUMEN

Protein-protein interactions are a preliminary but fundamental key to many biological systems. Identification of proteins that interact with particular bait not only contributes to a deeper understanding of bait protein function but also provides much information for the discovery of larger-scale interaction networks (interactome). Therefore, protein-protein interaction mapping is regarded as a widely accepted standardized functional genomics technique that provides comprehensive functional interpretation of previously uncharacterized proteins. A commonly used approach to detecting novel protein-protein interactions is the yeast two-hybrid system. In this chapter we describe in detail the protocols used to dissect the rice MAPK interactome, including the bait protein auto-activation test, identification of a rice MAPK interacting protein, confirmation of interaction by retransformation assay and characterization of the novel interacting protein.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oryza/metabolismo , Mapeo de Interacción de Proteínas/métodos , Técnicas del Sistema de Dos Híbridos , Escherichia coli/genética , Genes Reporteros/genética , Hidroliasas/genética , Oryza/enzimología , Plásmidos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transformación Genética , beta-Galactosidasa/genética
12.
Proteomics ; 14(1): 105-15, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24243689

RESUMEN

The mitogen-activated protein kinase (MAPK) cascade is composed at least of MAP3K (for MAPK kinase kinase), MAP2K, and MAPK family modules. These components together play a central role in mediating extracellular signals to the cell and vice versa by interacting with their partner proteins. However, the MAP3K-interacting proteins remain poorly investigated in plants. Here, we utilized a yeast two-hybrid system and bimolecular fluorescence complementation in the model crop rice (Oryza sativa) to map MAP3K-interacting proteins. We identified 12 novel nonredundant interacting protein pairs (IPPs) representing 11 nonredundant interactors using 12 rice MAP3Ks (available as full-length cDNA in the rice KOME (http://cdna01.dna.affrc.go.jp/cDNA/) at the time of experimental design and execution) as bait and a rice seedling cDNA library as prey. Of the 12 MAP3Ks, only six had interacting protein partners. The established MAP3K interactome consisted of two kinases, three proteases, two forkhead-associated domain-containing proteins, two expressed proteins, one E3 ligase, one regulatory protein, and one retrotransposon protein. Notably, no MAP3K showed physical interaction with either MAP2K or MAPK. Seven IPPs (58.3%) were confirmed in vivo by bimolecular fluorescence complementation. Subcellular localization of 14 interactors, together involved in nine IPPs (75%) further provide prerequisite for biological significance of the IPPs. Furthermore, GO of identified interactors predicted their involvement in diverse physiological responses, which were supported by a literature survey. These findings increase our knowledge of the MAP3K-interacting proteins, help in proposing a model of MAPK modules, provide a valuable resource for developing a complete map of the rice MAPK interactome, and allow discussion for translating the interactome knowledge to rice crop improvement against environmental factors.


Asunto(s)
Quinasas Quinasa Quinasa PAM/metabolismo , Oryza/genética , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , Quinasas Quinasa Quinasa PAM/química , Quinasas Quinasa Quinasa PAM/genética , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Reproducibilidad de los Resultados , Técnicas del Sistema de Dos Híbridos
13.
J Proteome Res ; 12(11): 4652-69, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23984864

RESUMEN

Diverse abiotic and biotic stresses have marked effects on plant growth and productivity. To combat such stresses, plants have evolved complex but not well understood responses. Common effects upon perception of environmental stress are differential expression of the plant proteome and the synthesis of novel regulatory proteins for protection from and acclimation to stress conditions. Plants respond differently in terms of activation of stress-responsive signaling pathways depending upon the type and nature of the stresses to which they are exposed. Progress in proteomics and systems biology approaches has made it possible to identify the novel proteins and their interactions that function in abiotic stress responses. This will enable elucidation of the functions of individual proteins and their roles in signaling networks. Proteomic analysis of the responses to various stress conditions is performed most commonly using 2D gel electrophoresis and high-throughput identification by LC-MS/MS. Because of recent developments in proteomics techniques, numerous proteomics studies of rice under abiotic stress conditions have been performed. In this review, proteomics studies addressing rice responses to the major environmental stresses--including cold, heat, drought, salt, heavy metals, minerals, UV radiation, and ozone--are discussed. Unique or common protein responses to these stress conditions are summarized and interpreted according to their possible physiological responses in each stress. Additionally, proteomics studies on various plant systems under various abiotic stress conditions are compared to provide deeper understanding of specific and common proteome responses in rice and other plant systems, which will further contribute to the identification of abiotic stress tolerance factor at protein level. Functional analysis of stress-responsive proteins will provide new research objectives with the aim of achieving stable crop productivity in the face of the increasing abiotic stress conditions caused by global climate change.


Asunto(s)
Ambiente , Contaminantes Ambientales/efectos adversos , Regulación de la Expresión Génica de las Plantas/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Proteómica/métodos , Estrés Fisiológico/fisiología , Rayos Ultravioleta , Cromatografía Liquida , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Oryza/metabolismo , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Espectrometría de Masas en Tándem
14.
Plant Cell Rep ; 32(6): 923-31, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23571660

RESUMEN

Mitogen-activated protein kinase (MAPK) signaling cascades are evolutionarily conserved fundamental signal transduction pathways. A MAPK cascade consists of many distinct MAPKKK-MAPKK-MAPK modules linked to various upstream receptors and downstream targets through sequential phosphorylation and activation of the cascade components. These cascades collaborate in transmitting a variety of extracellular signals and in controlling cellular responses and processes such as growth, differentiation, cell death, hormonal signaling, and stress responses. Although MAPK proteins play central roles in signal transduction pathways, our knowledge of MAPK signaling in hormonal responses in rice has been limited to a small subset of specific upstream and downstream interacting targets. However, recent studies revealing direct MAPK and MAPKK interactions have provided the basis for elucidating interaction specificities, functional divergence, and functional modulation during hormonal responses. In this review, we highlight current insights into MAPKK-MAPK interaction patterns in rice, with emphasis on the biological significance of these interacting pairs in SA (salicylic acid), JA (jasmonic acid), ET (ethylene), and ABA (abscisic acid) responses, and discuss the challenges in understanding functional signal transduction networks mediated by these hormones.


Asunto(s)
Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Mapas de Interacción de Proteínas , Ácido Abscísico/metabolismo , Etilenos/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo
15.
Methods Mol Biol ; 956: 151-84, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23135851

RESUMEN

Rice is one of the most important food and cereal crop plants in the world. Rice proteomics began in the 1990s. Since then, considerable progress has been made in establishing protocols from isolation of rice proteins from different tissues, organs, and organelles, to separation of complex proteins and to their identification by mass spectrometry. Since the year 2000, global proteomics studies have been performed during growth and development under numerous biotic and abiotic environmental conditions. Two-dimensional (2-D) gel-based proteomics platform coupled with mass spectrometry has been retained as the workhorse for proteomics of a variety of rice samples. In this chapter, we describe in detail the different protocols used for isolation of rice proteins, their separation, detection, and identification using gel-based proteomics and mass spectrometry approaches.


Asunto(s)
Oryza/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Germinación , Oryza/crecimiento & desarrollo , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Semillas
16.
Plant Physiol ; 160(1): 477-87, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22786887

RESUMEN

Mitogen-activated protein kinase (MAPK) cascades support the flow of extracellular signals to intracellular target molecules and ultimately drive a diverse array of physiological functions in cells, tissues, and organisms by interacting with other proteins. Yet, our knowledge of the global physical MAPK interactome in plants remains largely fragmented. Here, we utilized the yeast two-hybrid system and coimmunoprecipitation, pull-down, bimolecular fluorescence complementation, subcellular localization, and kinase assay experiments in the model crop rice (Oryza sativa) to systematically map what is to our knowledge the first plant MAPK-interacting proteins. We identified 80 nonredundant interacting protein pairs (74 nonredundant interactors) for rice MAPKs and elucidated the novel proteome-wide network of MAPK interactors. The established interactome contains four membrane-associated proteins, seven MAP2Ks (for MAPK kinase), four MAPKs, and 59 putative substrates, including 18 transcription factors. Several interactors were also validated by experimental approaches (in vivo and in vitro) and literature survey. Our results highlight the importance of OsMPK1, an ortholog of tobacco (Nicotiana benthamiana) salicyclic acid-induced protein kinase and Arabidopsis (Arabidopsis thaliana) AtMPK6, among the rice MAPKs, as it alone interacts with 41 unique proteins (51.2% of the mapped MAPK interaction network). Additionally, Gene Ontology classification of interacting proteins into 34 functional categories suggested MAPK participation in diverse physiological functions. Together, the results obtained essentially enhance our knowledge of the MAPK-interacting protein network and provide a valuable research resource for developing a nearly complete map of the rice MAPK interactome.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/análisis , Oryza/enzimología , Técnicas del Sistema de Dos Híbridos , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Proteínas Bacterianas/metabolismo , Activación Enzimática , Pruebas de Enzimas/métodos , Biblioteca de Genes , Ensayos Analíticos de Alto Rendimiento , Inmunoprecipitación , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Cebollas/metabolismo , Oryza/genética , Fosforilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas , Proteoma/análisis , Proteoma/genética , Proteoma/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción
17.
Proteomics ; 12(6): 878-900, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22539438

RESUMEN

Magnaporthe oryzae is a devastating blast fungal pathogen of rice (Oryza sativa L.) that causes dramatic decreases in seed yield and quality. During the early stages of infection by this pathogen, the fungal spore senses the rice leaf surface, germinates, and penetrates the cell via an infectious structure known as an appressorium. During this process, M. oryzae secretes several proteins; however, these proteins are largely unknown mainly due to the lack of a suitable method for isolating secreted proteins during germination and appressoria formation. We examined the secretome of M. oryzae by mimicking the early stages of infection in vitro using a glass plate (GP), PVDF membrane, and liquid culture medium (LCM). Microscopic observation of M. oryzae growth revealed appressorium formation on the GP and PVDF membrane resembling natural M. oryzae-rice interactions; however, appresorium formation was not observed in the LCM. Secreted proteins were collected from the GP (3, 8, and 24 h), PVDF membrane (24 h), and LCM (48 h) and identified by two-dimensional gel electrophoresis (2DE) followed by tandem mass spectrometry. The GP, PVDF membrane, and LCM-derived 2D gels showed distinct protein patterns, indicating that they are complementary approaches. Collectively, 53 nonredundant proteins including previously known and novel secreted proteins were identified. Six biological functions were assigned to the proteins, with the predominant functional classes being cell wall modification, reactive oxygen species detoxification, lipid modification, metabolism, and protein modification. The in vitro system using GPs and PVDF membranes applied in this study to survey the M. oryzae secretome, can be used to further our understanding of the early interactions between M. oryzae and rice leaves.


Asunto(s)
Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Magnaporthe/fisiología , Oryza/microbiología , Secuencia de Aminoácidos , Electroforesis en Gel Bidimensional , Proteínas Fúngicas/química , Magnaporthe/metabolismo , Datos de Secuencia Molecular
18.
Plant Biotechnol J ; 9(3): 348-58, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20731786

RESUMEN

Photosensitizers are common in nature and play diverse roles as defense compounds and pathogenicity determinants and as important molecules in many biological processes. Toxoflavin, a photosensitizer produced by Burkholderia glumae, has been implicated as an essential virulence factor causing bacterial rice grain rot. Toxoflavin produces superoxide and H2O2 during redox cycles under oxygen and light, and these reactive oxygen species cause phytotoxic effects. To utilize toxoflavin as a selection agent in plant transformation, we identified a gene, tflA, which encodes a toxoflavin-degrading enzyme in the Paenibacillus polymyxa JH2 strain. TflA was estimated as 24.56 kDa in size based on the amino acid sequence and is similar to a ring-cleavage extradiol dioxygenase in the Exiguobacterium sp. 255-15; however, unlike other extradiol dioxygenases, Mn(2+) and dithiothreitol were required for toxoflavin degradation by TflA. Here, our results suggested toxoflavin is a photosensitizer and its degradation by TflA serves as a light-dependent selection marker system in diverse plant species. We examined the efficiencies of two different plant selection systems, toxoflavin/tflA and hygromycin/hygromycin phosphotransferase (hpt) in both rice and Arabidopsis. The toxoflavin/tflA selection was more remarkable than hygromycin/hpt selection in the high-density screening of transgenic Arabidopsis seeds. Based on these results, we propose the toxoflavin/tflA selection system, which is based on the degradation of the photosensitizer, provides a new robust nonantibiotic selection marker system for diverse plants.


Asunto(s)
Técnicas Genéticas , Luz , Plantas/efectos de la radiación , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Biomarcadores/metabolismo , Cinamatos/farmacología , Genes Bacterianos/genética , Higromicina B/análogos & derivados , Higromicina B/farmacología , Oryza/efectos de los fármacos , Oryza/genética , Paenibacillus/efectos de los fármacos , Paenibacillus/enzimología , Paenibacillus/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Plantas/efectos de los fármacos , Plantas/metabolismo , Plantas Modificadas Genéticamente , Pirimidinonas/química , Pirimidinonas/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Transformación Genética/efectos de los fármacos , Transformación Genética/efectos de la radiación , Triazinas/química , Triazinas/farmacología
19.
Proteomics ; 10(4): 799-827, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19953550

RESUMEN

Plant secretomics is a newly emerging area of the plant proteomics field. It basically describes the global study of secreted proteins into the extracellular space of plant cell or tissue at any given time and under certain conditions through various secretory mechanisms. A combination of biochemical, proteomics and bioinformatics approaches has been developed to isolate, identify and profile secreted proteins using complementary in vitro suspension-cultured cells and in planta systems. Developed inventories of secreted proteins under normal, biotic and abiotic conditions revealed several different types of novel secreted proteins, including the leaderless secretory proteins (LSPs). On average, LSPs can account for more than 50% of the total identified secretome, supporting, as in other eukaryotes, the existence of novel secretory mechanisms independent of the classical endoplasmic reticulum-Golgi secretory pathway, and suggesting that this non-classical mechanism of protein expression is, for as yet unknown reasons, more massively used than in other eukaryotic systems. Plants LSPs, which seem to be potentially involved in the defense/stress responses, might have dual (extracellular and/or intracellular) roles as most of them have established intracellular functions, yet presently unknown extracellular functions. Evidence is emerging on the role of glycosylation in the apical sorting and trafficking of secretory proteins. These initial secretome studies in plants have considerably advanced our understanding on secretion of different types of proteins and their underlying mechanisms, and opened a door for comparative analyses of plant secretomes with those of other organisms. In this first review on plant secretomics, we summarize and discuss the secretome definition, the applied approaches for unlocking secrets of the secreted proteins in the extracellular fluid, the possible functional significance and secretory mechanisms of LSPs, as well as glycosylation of secreted proteins and challenges involved ahead. Further improvements in existing and developing strategies and techniques will continue to drive forward plant secretomics research to building comprehensive and confident data sets of secreted proteins. This will lead to an increased understanding on how cells couple the concerted action of secreted protein networks to their internal and external environments.


Asunto(s)
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteómica/métodos , Biología Computacional , Glicosilación , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Señales de Clasificación de Proteína , Vías Secretoras
20.
Mol Cells ; 28(5): 431-9, 2009 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-19904499

RESUMEN

Rice Oryza sativa accelerated cell death and resistance 1 (OsACDR1) encodes a putative Raf-like mitogen-activated protein kinase kinase kinase (MAPKKK). We had previously reported upregulation of the OsACDR1 transcript by a range of environmental stimuli involved in eliciting defense-related pathways. Here we apply biochemical, gain and loss-of-function approaches to characterize OsACDR1 function in rice. The OsACDR1 protein showed autophosphorylation and possessed kinase activity. Rice plants overexpressing OsACDR1 exhibited spontaneous hypersensitive response (HR)-like lesions on leaves, upregulation of defense-related marker genes and accumulation of phenolic compounds and secondary metabolites (phytoalexins). These transgenic plants also acquired enhanced resistance to a fungal pathogen (Magnaporthe grisea) and showed inhibition of appressorial penetration on the leaf surface. In contrast, loss-offunction and RNA silenced OsACDR1 rice mutant plants showed downregulation of defense-related marker genes expressions and susceptibility to M. grisea. Furthermore, transient expression of an OsACDR1:GFP fusion protein in rice protoplast and onion epidermal cells revealed its localization to the nucleus. These results indicate that OsACDR1 plays an important role in the positive regulation of disease resistance in rice.


Asunto(s)
Inmunidad Innata/inmunología , Magnaporthe/fisiología , Oryza/enzimología , Oryza/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Núcleo Celular/enzimología , Recuento de Colonia Microbiana , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Inmunidad Innata/genética , Quinasas Quinasa Quinasa PAM/química , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Magnaporthe/patogenicidad , Mutación/genética , Oryza/genética , Oryza/inmunología , Fenoles/metabolismo , Enfermedades de las Plantas/genética , Hojas de la Planta/enzimología , Hojas de la Planta/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Transporte de Proteínas , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA