Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Environ Sci Pollut Res Int ; 31(5): 7977-7993, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177645

RESUMEN

In this study, we present the results of the first comparison of the elimination of toxic Cr(VI) ions, which are hazardous contamination of the environment, from aqueous solutions using ion exchangers (IEs) and polymer materials (PMs) impregnated with D2EHPA or ionic liquids (Cyphos IL 101 and Cyphos IL 104). Sorption of Cr(VI) ions and desorption from the formulated sorption materials were carried out. In comparison, classical solvent extraction was accomplished. Fourier transform infrared-attenuated total reflectance spectroscopy (FTIR-ATR), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and atomic force microscopy (AFM) have been used for characterization of the structure of developed IEs and PMs. The highest efficiency of adsorption of Cr(VI) ions was obtained using PMs with ionic liquids (>82%). Desorption from these materials were also very efficient (>75%). On the contrary, the application of IEs allowed for obtaining the best results of both, sorption and desorption processes when using D2EHPA (75% and 72%, respectively). The application of PMs and IEs is part of the green chemistry, and the conducted elimination of chromium(VI) ions using developed materials allows for the conclusion that they can potentially be used on a larger scale, e.g., for the treatment of industrial wastewater rich in Cr(VI) ions.


Asunto(s)
Líquidos Iónicos , Contaminantes Químicos del Agua , Polímeros , Cinética , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/química , Cromo/química , Iones , Adsorción , Espectroscopía Infrarroja por Transformada de Fourier
2.
Membranes (Basel) ; 13(10)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37888011

RESUMEN

The systematic increase in the use of rare earth elements (REEs) in various technologically advanced products around the world (e.g., in electronic devices), the growing amount of waste generated by the use of high-tech materials, and the limited resources of naturally occurring REE ores resulted in an intensive search for effective and environmentally safe methods for recovering these elements. Among these methods, techniques based on the application of various types of liquid membranes (LMs) play an important role, primarily due to their high efficiency, the simplicity of membrane formation and use, the utilization of only small amounts of environmentally hazardous reagents, and the possibility of simultaneous extraction and back-extraction and reusing the membranes after regeneration. However, because both primary and secondary sources (e.g., waste) of REEs are usually complex and contain a wide variety of components, and the selectivity and efficiency of LMs depend on many factors (e.g., the composition and form of the membrane, nature of the recovered ions, composition of the feed and stripping phases, etc.), new membranes are being developed that are "tailored" to the properties of the recovered rare earth elements and to the character of the solution in which they occur. This review describes the latest achievements (since 2019) related to the recovery of a range of REEs with the use of various liquid membranes (supported liquid membranes (SLMs), emulsion liquid membranes (ELMs), and polymer inclusion membranes (PIMs)), with particular emphasis on methods that fall within the trend of eco-friendly solutions.

3.
Membranes (Basel) ; 13(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36837635

RESUMEN

Pollution of the environment, including water resources, is currently one of the greatest challenges due to emerging new contaminants of anthropogenic origin. Of particular concern are emerging organic pollutants such as pharmaceuticals, endocrine disruptors, and pesticides, but also other industrial pollutants, for example, synthetic dyes. The growing demand for environmentally friendly and economical methods of removing emerging contaminants and synthetic dyes from wastewater resulted in increased interest in the possibility of using techniques based on the application of polymer inclusion membranes (PIMs) for this purpose. PIM-based techniques are promising methods for eliminating emerging contaminants and synthetic dyes from aqueous solutions, including wastewater, due to high efficiency, membranes versatility, ease/low cost of preparation, and high selectivity. This review describes the latest developments related to the removal of various emerging contaminants and synthetic dyes from aqueous solutions using PIMs over the past few years, with particular emphasis on research aimed at increasing the effectiveness and selectivity of PIMs, which may contribute to wider use of these methods in the future.

4.
Membranes (Basel) ; 12(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36422127

RESUMEN

The growing demand for environmentally friendly and economical methods of removing toxic metal ions from polluted waters and for the recovery of valuable noble metal ions from various types of waste, which are often treated as their secondary source, has resulted in increased interest in techniques based on the utilization of polymer inclusion membranes (PIMs). PIMs are characterized by many advantages (e.g., the possibility of simultaneous extraction and back extraction, excellent stability and high reusability), and can be adapted to the properties of the removed target analyte by appropriate selection of carriers, polymers and plasticizers used for their formulation. However, the selectivity and efficiency of the membrane process depends on many factors (e.g., membrane composition, nature of removed metal ions, composition of aqueous feed solution, etc.), and new membranes are systematically designed to improve these parameters. Numerous studies aimed at improving PIM technology may contribute to the wider use of these methods in the future on an industrial scale, e.g., in wastewater treatment. This review describes the latest achievements related to the removal of various metal ions by PIMs over the past 3 years, with particular emphasis on solutions with potential industrial application.

5.
Membranes (Basel) ; 11(11)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34832092

RESUMEN

This paper presents the results of the first application of N,N'-bis(salicylidene)ethylenediamine (salen) as an extractant in classical liquid-liquid extraction and as a carrier in membrane processes designed for the recovery of noble metal ions (Pd2+, Ag+, Pt2+, and Au3+) from aqueous solutions. In the case of the utilization of membranes, both sorption and desorption were investigated. Salen has not been used so far in the sorption processes of precious metal ions. Recovery experiments were performed on single-component solutions (containing only one type of metal ions) and polymetallic solutions (containing ions of all four metals). The stability constants of the obtained complexes were determined spectrophotometrically. In contrast, electrospray ionization high-resolution mass spectrometry (ESI-HRMS) was applied to examine the elemental composition and charge of the generated complexes of chosen noble metal ions and salen molecules. The results show the great potential of N,N'-bis(salicylidene)ethylenediamine as both an extractant and a carrier. In the case of single-component solutions, the extraction percentage was over 99% for all noble metal ions (molar ratio M:L of 1:1), and in the case of a polymetallic solution, it was the lowest, but over 94% for platinum ions and the highest value (over 99%) for gold ions. The percentages of sorption (%Rs) of metal ions from single-component solutions using polymer membranes containing N,N'-bis(salicylidene)ethylenediamine as a carrier were highest after 24 h of the process (93.23% for silver(I) ions, 74.99% for gold(III) ions, 69.11% and 66.13% for palladium(II) and platinum(II) ions, respectively), similar to the values obtained for the membrane process conducted in multi-metal solutions (92.96%, 84.26%, 80.94%, and 48.36% for Pd(II), Au(III), Ag(I), and Pt(II) ions, respectively). The percentage of desorption (%Rdes) was very high for single-component solutions (the highest, i.e., 99%, for palladium solution and the lowest, i.e., 88%, for silver solution), while for polymetallic solutions, these values were slightly lower (for Pt(II), it was the lowest at 63.25%).

6.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34502032

RESUMEN

The work describes the results of the first application of 2,6-bis(4-methoxybenzoyl)-diaminopyridine (L) for the recovery of noble metal ions (Au(III), Ag(I), Pd(II), Pt(II)) from aqueous solutions using two different separation processes: dynamic (classic solvent extraction) and static (polymer membranes). The stability constants of the complexes formed by the L with noble metal ions were determined using the spectrophotometry method. The results of the performed experiments clearly show that 2,6-bis(4-methoxybenzoyl)-diaminopyridine is an excellent extractant, as the recovery was over 99% for all studied noble metal ions. The efficiency of 2,6-bis(4-methoxybenzoyl)-diaminopyridine as a carrier in polymer membranes after 24 h of sorption was lower; the percentage of metal ions removal from the solutions (%Rs) decreased in following order: Ag(I) (94.89%) > Au(III) (63.46%) > Pt(II) (38.99%) > Pd(II) (23.82%). The results of the desorption processes carried out showed that the highest percentage of recovery was observed for gold and silver ions (over 96%) after 48 h. The results presented in this study indicate the potential practical applicability of 2,6-bis(4-methoxybenzoyl)-diaminopyridine in the solvent extraction and polymer membrane separation of noble metal ions from aqueous solutions (e.g., obtained as a result of WEEE leaching or industrial wastewater).


Asunto(s)
Cationes/aislamiento & purificación , Metales Pesados/aislamiento & purificación , Cationes/química , Oro/aislamiento & purificación , Metales Pesados/química , Paladio/aislamiento & purificación , Platino (Metal)/aislamiento & purificación , Plata/aislamiento & purificación
7.
Sci Rep ; 11(1): 15995, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362952

RESUMEN

The stability of two groups of conformationally locked molecules, similar in topology, but differing only by the type of the bridge rigidifying their structure, is studied. The series of the less-rigid 2-phenacylheterocyclic compounds and their stiff difluoroboranyl derivatives are investigated for the determination of the effect of [Formula: see text]/S/O replacement in a five-membered heterocyclic ring and the presence of a strong electron-donating group on the tautomeric equilibrium, protonation affinity, and fragmentation pattern observed in the structural elucidation by means of mass spectrometry technique. The results of the [Formula: see text]B97X-D/6-311++G(d,p) calculations, the topological analysis of electron density as well as the experimental MS measurements show the importance of the number of heteroatoms, their properties, and location in the molecule for the rational design of the systems of desired stable tautomers or the favorable protonation sites. The obtained data allow for the understanding of the fundamentals of the novel highly fluorescent difluoroborates fragmentation behavior, vital for their structural elucidation with the application of high-resolution tandem mass spectrometry methods.

8.
Polymers (Basel) ; 13(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946200

RESUMEN

In this article, the application of a polymer film containing the ionic liquid Cyphos IL 101 for the simultaneous recovery of precious and heavy metal ions ((Ni(II), Zn(II), Co(II), Cu(II), Sn(II), Pb(II), Ag(I), Pd(II), and Au(III)) from waste electrical and electronic equipment (WEEE) is described. The experiments were performed for solutions containing metal ions released from computer e-waste due to leaching carried out with concentrated nitric(V) acid and aqua regia. It was found that the applied polymer film allows for the efficient recovery of precious metals (98.9% of gold, 79.3% of silver, and 63.6% of palladium). The recovery of non-ferrous metals (Co, Ni, Cu, Zn, Sn, and Pb) was less efficient (25-40%). Moreover, the results of the performed sorption/desorption processes show that the polymer film with Cyphos IL 101 can be successfully used after regeneration to recover metals ions several times.

9.
Membranes (Basel) ; 10(4)2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32252462

RESUMEN

In this paper, three main methods of metal ion separation, i.e., liquid-liquid extraction, transport across polymer inclusion membranes (PIMs), and sorption/desorption, are described. In all of them, N,N'-bis(salicylidene)ethylenediamine (salen) was used as an active compound, i.e., as an extractant or as a carrier for the recovery of Ni(II), Cu(II), or Zn(II) ions from aqueous solutions. In each case, the recovery was performed on a model solution, which contained only a single metal ion. The obtained results were compared with the author's previous results for the separation of metal ions using ß-diketones, since both ß-diketones and salen form the so-called Werner-type complexes. Electrospray ionization high-resolution mass spectrometry (ESI-HRMS) was also applied to confirm the ability of the carrier to form complexes with metal ions in a solution. Moreover, spectrophotometry was used to determine the stability constant of the obtained complexes.

10.
J Mass Spectrom ; 54(7): 592-599, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31066154

RESUMEN

The effect of the properties of sulphur and selenium atoms, the composition and location of substituents (-CH3 , -OCH3 , -C2 H5 , and -C3 H6 -((N+ Br- )C5 H5 )), and the charge state on the collision induced dissociation (CID) behaviour of ions generated by electrospray ionization (ESI) of thiocarbocyanine and selenocarbocyanine dyes have been investigated. The results show that, for of all the examined singly charged ions, the main dissociation channel was related to the formation of distonic ions, generated as a result of cleavages within the dimethine bridge. In the case of doubly charged ions (with propyl-pyridinium substituents), competition between fragmentation processes related to charges located at different nitrogen atoms has been observed. The S/Se replacement also has an impact on the CID behaviour of the examined carbocyanine dyes. On the basis of the performed CID MS/MS experiments, general rules for the CID of thiocarbocyanine and selenocarbocyanine dyes have been proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA