Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Commun ; 9(1): 4867, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30451826

RESUMEN

Osm1 and Frd1 are soluble fumarate reductases from yeast that are critical for allowing survival under anaerobic conditions. Although they maintain redox balance during anaerobiosis, the underlying mechanism is not understood. Here, we report the crystal structure of a eukaryotic soluble fumarate reductase, which is unique among soluble fumarate reductases as it lacks a heme domain. Structural and enzymatic analyses indicate that Osm1 has a specific binding pocket for flavin molecules, including FAD, FMN, and riboflavin, catalyzing their oxidation while reducing fumarate to succinate. Moreover, ER-resident Osm1 can transfer electrons from the Ero1 FAD cofactor to fumarate either by free FAD or by a direct interaction, allowing de novo disulfide bond formation in the absence of oxygen. We conclude that soluble eukaryotic fumarate reductases can maintain an oxidizing environment under anaerobic conditions, either by oxidizing cellular flavin cofactors or by a direct interaction with flavoenzymes such as Ero1.


Asunto(s)
Mononucleótido de Flavina/química , Flavina-Adenina Dinucleótido/química , Glicoproteínas/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Riboflavina/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Succinato Deshidrogenasa/química , Anaerobiosis/genética , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/enzimología , Escherichia coli/genética , Mononucleótido de Flavina/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Riboflavina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Shewanella/enzimología , Shewanella/genética , Especificidad por Sustrato , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Triazinas/química , Triazinas/metabolismo
2.
Genetics ; 202(4): 1395-409, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26837754

RESUMEN

Aneuploidy, an unbalanced karyotype in which one or more chromosomes are present in excess or reduced copy number, causes an array of known phenotypes including proteotoxicity, genomic instability, and slowed proliferation. However, the molecular consequences of aneuploidy are poorly understood and an unbiased investigation into aneuploid cell biology is lacking. We performed high-throughput screens for genes the deletion of which has a synthetic fitness cost in aneuploidy Saccharomyces cerevisiae cells containing single extra chromosomes. This analysis identified genes that, when deleted, decrease the fitness of specific disomic strains as well as those that impair the proliferation of a broad range of aneuploidies. In one case, a chromosome-specific synthetic growth defect could be explained fully by the specific duplication of a single gene on the aneuploid chromosome, highlighting the ability of individual dosage imbalances to cause chromosome-specific phenotypes in aneuploid cells. Deletion of other genes, particularly those involved in protein transport, however, confers synthetic sickness on a broad array of aneuploid strains. Indeed, aneuploid cells, regardless of karyotype, exhibit protein secretion and cell-wall integrity defects. Thus, we were able to use this screen to identify novel cellular consequences of aneuploidy, dependent on both specific chromosome imbalances and caused by many different aneuploid karyotypes. Interestingly, the vast majority of cancer cells are highly aneuploid, so this approach could be of further use in identifying both karyotype-specific and nonspecific stresses exhibited by cancer cells as potential targets for the development of novel cancer therapeutics.


Asunto(s)
Aneuploidia , Cromosomas Fúngicos , Saccharomyces cerevisiae/genética , Eliminación de Gen , Dosificación de Gen , Perfilación de la Expresión Génica/métodos , Aptitud Genética , Cariotipo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mutaciones Letales Sintéticas/genética
3.
Elife ; 3: e03496, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25053742

RESUMEN

Oxidative protein folding in the endoplasmic reticulum (ER) has emerged as a potentially significant source of cellular reactive oxygen species (ROS). Recent studies suggest that levels of ROS generated as a byproduct of oxidative folding rival those produced by mitochondrial respiration. Mechanisms that protect cells against oxidant accumulation within the ER have begun to be elucidated yet many questions still remain regarding how cells prevent oxidant-induced damage from ER folding events. Here we report a new role for a central well-characterized player in ER homeostasis as a direct sensor of ER redox imbalance. Specifically we show that a conserved cysteine in the lumenal chaperone BiP is susceptible to oxidation by peroxide, and we demonstrate that oxidation of this conserved cysteine disrupts BiP's ATPase cycle. We propose that alteration of BiP activity upon oxidation helps cells cope with disruption to oxidative folding within the ER during oxidative stress.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Estrés del Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas HSP70 de Choque Térmico/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Cisteína/química , Cisteína/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genes Reporteros , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Homeostasis , Peróxido de Hidrógeno/farmacología , Operón Lac , Modelos Moleculares , Oxidación-Reducción , Pliegue de Proteína , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Transducción de Señal
4.
Science ; 344(6180): 208-11, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24723613

RESUMEN

Genome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner. We identified 317 compounds that specifically perturb the function of 121 genes and characterized the mechanism of specific compounds. Global analysis revealed that the cellular response to small molecules is limited and described by a network of 45 major chemogenomic signatures. Our results provide a resource for the discovery of functional interactions among genes, chemicals, and biological processes.


Asunto(s)
Células/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Resistencia a Medicamentos/genética , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo/métodos , Bibliotecas de Moléculas Pequeñas/farmacología , Línea Celular Tumoral , Haploinsuficiencia , Humanos , Farmacogenética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética
5.
J Cell Biol ; 196(6): 713-25, 2012 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22412017

RESUMEN

The endoplasmic reticulum (ER) provides an environment optimized for oxidative protein folding through the action of Ero1p, which generates disulfide bonds, and Pdi1p, which receives disulfide bonds from Ero1p and transfers them to substrate proteins. Feedback regulation of Ero1p through reduction and oxidation of regulatory bonds within Ero1p is essential for maintaining the proper redox balance in the ER. In this paper, we show that Pdi1p is the key regulator of Ero1p activity. Reduced Pdi1p resulted in the activation of Ero1p by direct reduction of Ero1p regulatory bonds. Conversely, upon depletion of thiol substrates and accumulation of oxidized Pdi1p, Ero1p was inactivated by both autonomous oxidation and Pdi1p-mediated oxidation of Ero1p regulatory bonds. Pdi1p responded to the availability of free thiols and the relative levels of reduced and oxidized glutathione in the ER to control Ero1p activity and ensure that cells generate the minimum number of disulfide bonds needed for efficient oxidative protein folding.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glicoproteínas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Glutatión/metabolismo , Homeostasis , Oxidación-Reducción , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
Mol Biol Cell ; 22(11): 1919-29, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21471002

RESUMEN

Intracellular trafficking of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae is regulated by amino acid abundance. When amino acids are scarce Gap1p is sorted to the plasma membrane, whereas when amino acids are abundant Gap1p is sorted from the trans-Golgi through the multivesicular endosome (MVE) and to the vacuole. Here we test the hypothesis that Gap1p itself is the sensor of amino acid abundance by examining the trafficking of Gap1p mutants with altered substrate specificity and transport activity. We show that trafficking of mutant Gap1p(A297V), which does not transport basic amino acids, is also not regulated by these amino acids. Furthermore, we have identified a catalytically inactive mutant that does not respond to complex amino acid mixtures and constitutively sorts Gap1p to the plasma membrane. Previously we showed that amino acids govern the propensity of Gap1p to recycle from the MVE to the plasma membrane. Here we propose that in the presence of substrate the steady-state conformation of Gap1p shifts to a state that is unable to be recycled from the MVE. These results indicate a parsimonious regulatory mechanism by which Gap1p senses its transport substrates to set an appropriate level of transporter activity at the cell surface.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Sistemas de Transporte de Aminoácidos/genética , Membrana Celular/metabolismo , Cuerpos Multivesiculares/metabolismo , Proteínas Mutantes/metabolismo , Mutación Missense , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia
7.
J Mol Biol ; 402(2): 388-98, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20655927

RESUMEN

The highly conserved Rag family GTPases have a role in reporting amino acid availability to the TOR (target of rapamycin) signaling complex, which regulates cell growth and metabolism in response to environmental cues. The yeast Rag proteins Gtr1p and Gtr2p were shown in multiple independent studies to interact with the membrane-associated proteins Gse1p (Ego3p) and Gse2p (Ego1p). However, mammalian orthologs of Gse1p and Gse2p could not be identified. We determined the crystal structure of Gse1p and found it to match the fold of two mammalian proteins, MP1 (mitogen-activated protein kinase scaffold protein 1) and p14, which form a heterodimeric complex that had been assigned a scaffolding function in mitogen-activated protein kinase pathways. The significance of this structural similarity is validated by the recent identification of a physical and functional association between mammalian Rag proteins and MP1/p14. Together, these findings reveal that key components of the TOR signaling pathway are structurally conserved between yeast and mammals, despite divergence of sequence to a degree that thwarts detection through simple homology searches.


Asunto(s)
Secuencia Conservada , Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Mamíferos , Proteínas de la Membrana , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae , Alineación de Secuencia
8.
J Biol Chem ; 285(24): 18155-65, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20348090

RESUMEN

The sulfhydryl oxidase Ero1 oxidizes protein disulfide isomerase (PDI), which in turn catalyzes disulfide formation in proteins folding in the endoplasmic reticulum (ER). The extent to which other members of the PDI family are oxidized by Ero1 and thus contribute to net disulfide formation in the ER has been an open question. The yeast ER contains four PDI family proteins with at least one potential redox-active cysteine pair. We monitored the direct oxidation of each redox-active site in these proteins by yeast Ero1p in vitro. In this study, we found that the Pdi1p amino-terminal domain was oxidized most rapidly compared with the other oxidoreductase active sites tested, including the Pdi1p carboxyl-terminal domain. This observation is consistent with experiments conducted in yeast cells. In particular, the amino-terminal domain of Pdi1p preferentially formed mixed disulfides with Ero1p in vivo, and we observed synthetic lethality between a temperature-sensitive Ero1p variant and mutant Pdi1p lacking the amino-terminal active-site disulfide. Thus, the amino-terminal domain of yeast Pdi1p is on a preferred pathway for oxidizing the ER thiol pool. Overall, our results provide a rank order for the tendency of yeast ER oxidoreductases to acquire disulfides from Ero1p.


Asunto(s)
Retículo Endoplásmico/enzimología , Glicoproteínas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Oxígeno/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Catálisis , Dominio Catalítico , Disulfuros/química , Flavinas/química , Variación Genética , Glutatión/metabolismo , Mutación , Oxígeno/química , Pliegue de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Temperatura
9.
Science ; 327(5964): 425-31, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20093466

RESUMEN

A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.


Asunto(s)
Redes Reguladoras de Genes , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biología Computacional , Duplicación de Gen , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Aptitud Genética , Redes y Vías Metabólicas , Mutación , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética
10.
J Mol Biol ; 384(3): 631-40, 2008 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-18845159

RESUMEN

Oxidoreductases belonging to the protein disulfide isomerase (PDI) family promote proper disulfide bond formation in substrate proteins in the endoplasmic reticulum. In plants and metazoans, new family members continue to be identified and assigned to various functional niches. PDI-like proteins typically contain tandem thioredoxin-fold domains. The limited information available suggested that the relative orientations of these domains may be quite uniform across the family, and structural models based on this assumption are appearing. However, the X-ray crystal structure of the yeast PDI family protein Mpd1p, described here, demonstrates the radically different domain orientations and surface properties achievable with multiple copies of the thioredoxin fold. A comparison of Mpd1p with yeast Pdi1p expands our perspective on the contexts in which redox-active motifs are presented in the PDI family.


Asunto(s)
Proteína Disulfuro Isomerasas/química , Proteínas Represoras/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Cristalografía por Rayos X/métodos , Disulfuros , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Proteína Disulfuro Isomerasas/fisiología , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Represoras/química , Proteínas de Saccharomyces cerevisiae/química , Tiorredoxinas/química
11.
Mol Biol Cell ; 19(7): 2962-72, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18434603

RESUMEN

The high capacity general amino acid permease, Gap1p, in Saccharomyces cerevisiae is distributed between the plasma membrane and internal compartments according to availability of amino acids. When internal amino acid levels are low, Gap1p is localized to the plasma membrane where it imports available amino acids from the medium. When sufficient amino acids are imported, Gap1p at the plasma membrane is endocytosed and newly synthesized Gap1p is delivered to the vacuole; both sorting steps require Gap1p ubiquitination. Although it has been suggested that identical trans-acting factors and Gap1p ubiquitin acceptor sites are involved in both processes, we define unique requirements for each of the ubiquitin-mediated sorting steps involved in delivery of Gap1p to the vacuole upon amino acid addition. Our finding that distinct ubiquitin-mediated sorting steps employ unique trans-acting factors, ubiquitination sites on Gap1p, and types of ubiquitination demonstrates a previously unrecognized level of specificity in ubiquitin-mediated protein sorting.


Asunto(s)
Sistemas de Transporte de Aminoácidos/fisiología , Membrana Celular/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Sistemas de Transporte de Aminoácidos/metabolismo , Citoplasma/metabolismo , Endocitosis , Complejos de Clasificación Endosomal Requeridos para el Transporte , Proteínas Fluorescentes Verdes/química , Lisina/química , Modelos Biológicos , Mutación , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Activación Transcripcional , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/química
12.
Biochim Biophys Acta ; 1783(4): 549-56, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18191641

RESUMEN

Living cells must be able to respond to physiological and environmental fluctuations that threaten cell function and viability. A cellular event prone to disruption by a wide variety of internal and external perturbations is protein folding. To ensure protein folding can proceed under a range of conditions, the cell has evolved transcriptional, translational, and posttranslational signaling pathways to maintain folding homeostasis during cell stress. This review will focus on oxidative protein folding in the endoplasmic reticulum (ER) and will discuss the features of the main facilitator of biosynthetic disulfide bond formation, Ero1. Ero1 plays an essential role in setting the redox potential in the ER and regulation of Ero1 activity is central to maintain redox homeostasis and proper ER folding activity.


Asunto(s)
Retículo Endoplásmico/química , Glicoproteínas/fisiología , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/fisiología , Disulfuros/química , Disulfuros/metabolismo , Glicoproteínas/química , Homeostasis , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Proteína Disulfuro Isomerasas/química , Proteínas de Saccharomyces cerevisiae/química
13.
Buenos Aires; Médica Panamericana; 5 ed; 2008. 1088 p. ilus, tab, graf.
Monografía en Español | LILACS | ID: lil-590465

RESUMEN

Contenido: Fundamentos químicos y moleculares. Organización celular y bioquímica. Genética y biología molecular. Se±alización celular. Tránsito de membrana. Citoesqueleto. Ciclo celular y control de la proliferación celular...


Asunto(s)
Disciplinas de las Ciencias Biológicas , Biología
14.
Cell ; 129(2): 333-44, 2007 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-17448992

RESUMEN

Introduction of disulfide bonds into proteins entering the secretory pathway is catalyzed by Ero1p, which generates disulfide bonds de novo, and Pdi1p, which transfers disulfides to substrate proteins. A sufficiently oxidizing environment must be maintained in the endoplasmic reticulum (ER) to allow for disulfide formation, but a pool of reduced thiols is needed for isomerization of incorrectly paired disulfides. We have found that hyperoxidation of the ER is prevented by attenuation of Ero1p activity through noncatalytic cysteine pairs. Deregulated Ero1p mutants lacking certain cysteines show increased enzyme activity, a decreased lag phase in kinetic assays, and growth defects in vivo. We hypothesize that noncatalytic cysteine pairs in Ero1p sense the level of potential substrates in the ER and correspondingly modulate Ero1p activity as part of a homeostatic regulatory system governing the thiol-disulfide balance in the ER.


Asunto(s)
Retículo Endoplásmico/metabolismo , Retroalimentación Fisiológica , Glicoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cistina/metabolismo , Disulfuros/metabolismo , Retículo Endoplásmico/química , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Saccharomyces cerevisiae/crecimiento & desarrollo
15.
Mol Biol Cell ; 17(10): 4411-9, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16885415

RESUMEN

The general amino acid permease, Gap1p, of Saccharomyces cerevisiae transports all naturally occurring amino acids into yeast cells for use as a nitrogen source. Previous studies have shown that a nonubiquitinateable form of the permease, Gap1p(K9R,K16R), is constitutively localized to the plasma membrane. Here, we report that amino acid transport activity of Gap1p(K9R,K16R) can be rapidly and reversibly inactivated at the plasma membrane by the presence of amino acid mixtures. Surprisingly, we also find that addition of most single amino acids is lethal to Gap1p(K9R,K16R)-expressing cells, whereas mixtures of amino acids are less toxic. This toxicity appears to be the consequence of uptake of unusually large quantities of a single amino acid. Exploiting this toxicity, we isolated gap1 alleles deficient in transport of a subset of amino acids. Using these mutations, we show that Gap1p inactivation at the plasma membrane does not depend on the presence of either extracellular or intracellular amino acids, but does require active amino acid transport by Gap1p. Together, our findings uncover a new mechanism for inhibition of permease activity in response to elevated amino acid levels and provide a physiological explanation for the stringent regulation of Gap1p activity in response to amino acids.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/farmacocinética , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Aminoácidos/toxicidad , Membrana Celular/enzimología , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Transporte de Proteínas/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo
16.
J Mol Biol ; 362(1): 89-101, 2006 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-16893552

RESUMEN

The ERV/ALR sulfhydryl oxidase domain is a versatile module adapted for catalysis of disulfide bond formation in various organelles and biological settings. Its four-helix bundle structure juxtaposes a Cys-X-X-Cys dithiol/disulfide motif with a bound flavin adenine dinucleotide (FAD) cofactor, enabling transfer of electrons from thiol substrates to non-thiol electron acceptors. ERV/ALR family members contain an additional di-cysteine motif outside the four-helix-bundle core. Although the location and context of this "shuttle" disulfide differs among family members, it is proposed to perform the same basic function of mediating electron transfer from substrate to the enzyme active site. We have determined by X-ray crystallography the structure of AtErv1, an ERV/ALR enzyme that contains a Cys-X4-Cys shuttle disulfide and oxidizes thioredoxin in vitro, and compared it to ScErv2, which has a Cys-X-Cys shuttle and does not oxidize thioredoxin at an appreciable rate. The AtErv1 shuttle disulfide is in a region of the structure that is disordered and thus apparently mobile and exposed. This feature may facilitate access of protein substrates to the shuttle disulfide. To test whether the shuttle disulfide region is modular and can confer on other enzymes oxidase activity toward new substrates, we generated chimeric enzyme variants combining shuttle disulfide and core elements from AtErv1 and ScErv2 and monitored oxidation of thioredoxin by the chimeras. We found that the AtErv1 shuttle disulfide region could indeed confer thioredoxin oxidase activity on the ScErv2 core. Remarkably, various chimeras containing the ScErv2 Cys-X-Cys shuttle disulfide were found to function efficiently as well. Since neither the ScErv2 core nor the Cys-X-Cys motif is therefore incapable of participating in oxidation of thioredoxin, we conclude that wild-type ScErv2 has evolved to repress activity on substrates of this type, perhaps in favor of a different, as yet unknown, substrate.


Asunto(s)
Disulfuros , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Estructura Terciaria de Proteína , Arabidopsis/enzimología , Cristalografía por Rayos X , Evolución Molecular Dirigida , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Oxidorreductasas/genética , Proteínas de Plantas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia
17.
Antioxid Redox Signal ; 8(5-6): 797-811, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16771671

RESUMEN

Two pathways for the formation of biosynthetic protein disulfide bonds have been characterized in the endoplasmic reticulum (ER) of eukaryotes. In the major pathway, the membrane-associated flavoprotein Ero1 generates disulfide bonds for transfer to protein disulfide isomerase (PDI), which is responsible for directly introducing disulfide bonds into secretory proteins. In a minor fungal-specific protein oxidation pathway, the membrane-associated flavoprotein Erv2 can catalyze disulfide bond formation via the transfer of oxidizing equivalents to PDI. Genomic sequencing has revealed an abundance of enzymes sharing homology with Ero1, Erv2, or PDI. Herein the authors discuss the functional, mechanistic, and potential structural similarities between these homologs and the core enzymes of the characterized ER oxidation pathways. In addition they speculate about the possible differences between these enzymes that may explain why the cell contains multiple proteins dedicated to a single process. Finally, the eukaryotic ER protein oxidation and reduction pathways are compared to the corresponding prokaryotic periplasmic pathways, to highlight the functional, mechanistic, and structural similarities that exist between the pathways in these two kingdoms despite very low primary sequence homology between the protein and small molecule components.


Asunto(s)
Disulfuros/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cisteína/metabolismo , Disulfuros/química , Flavoproteínas/química , Flavoproteínas/genética , Flavoproteínas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/metabolismo , Tiorredoxinas/metabolismo
18.
Nat Cell Biol ; 8(7): 657-67, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16732272

RESUMEN

The Saccharomyces cerevisiae general amino-acid permease, Gap1p, is a model for membrane proteins that are regulated by intracellular sorting according to physiological cues set by the availability of amino acids. Here, we report the identification of a conserved sorting complex for Gap1p, named the GTPase-containing complex for Gap1p sorting in the endosomes (GSE complex), which is required for proper sorting of Gap1p from the late endosome for eventual delivery to the plasma membrane. The complex contains two small GTPases (Gtr1p and Gtr2p) and three other proteins (Ybr077c, Ykr007w and Ltv1p) that are located in the late endosomal membrane. Importantly, Gtr2p interacts with the carboxy (C)-terminal cytosolic domain of Gap1p and a tyrosine-containing motif in this domain is necessary both to bind Gtr2p and to direct sorting of Gap1p to the plasma membrane. Together, these studies provide evidence that the GSE complex has a key role in trafficking Gap1p out of the endosome and may serve as coat proteins in this process.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Endosomas/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencias de Aminoácidos/fisiología , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/genética , Secuencia Conservada , Endosomas/genética , Evolución Molecular , Proteínas de Unión al GTP/genética , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Sustancias Macromoleculares/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Transporte de Proteínas/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
19.
Mol Biol Cell ; 17(7): 3031-50, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16641373

RESUMEN

Intracellular sorting of the general amino acid permease (Gap1p) in Saccharomyces cerevisiae depends on availability of amino acids such that at low amino acid concentrations Gap1p is sorted to the plasma membrane, whereas at high concentrations Gap1p is sorted to the vacuole. In a genome-wide screen for mutations that affect Gap1p sorting we identified deletions in a subset of components of the ESCRT (endosomal sorting complex required for transport) complex, which is required for formation of the multivesicular endosome (MVE). Gap1p-GFP is delivered to the vacuolar interior by the MVE pathway in wild-type cells, but when formation of the MVE is blocked by mutation, Gap1p-GFP efficiently cycles from this compartment to the plasma membrane, resulting in unusually high permease activity at the cell surface. Importantly, cycling of Gap1p-GFP to the plasma membrane is blocked by high amino acid concentrations, defining recycling from the endosome as a major step in Gap1p trafficking under physiological control. Mutations in LST4 and LST7 genes, previously identified for their role in Gap1p sorting, similarly block MVE to plasma membrane trafficking of Gap1p. However, mutations in other recycling complexes such as the retromer had no significant effect on the intracellular sorting of Gap1p, suggesting that Gap1p follows a genetically distinct pathway for recycling. We previously found that Gap1p sorting from the Golgi to the endosome requires ubiquitination of Gap1p by an Rsp5p ubiquitin ligase complex, but amino acid abundance does not appear to significantly alter the accumulation of polyubiquitinated Gap1p. Thus the role of ubiquitination appears to be a signal for delivery of Gap1p to the MVE, whereas amino acid abundance appears to control the cycling of Gap1p from the MVE to the plasma membrane.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/fisiología , Sistemas de Transporte de Aminoácidos/análisis , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/metabolismo , Aminoácidos/farmacología , Membrana Celular/metabolismo , Endocitosis , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Mutación , Transporte de Proteínas/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética
20.
Mol Biol Cell ; 17(5): 2256-66, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16495342

RESUMEN

The membrane-associated flavoprotein Ero1p promotes disulfide bond formation in the endoplasmic reticulum (ER) by selectively oxidizing the soluble oxidoreductase protein disulfide isomerase (Pdi1p), which in turn can directly oxidize secretory proteins. Two redox-active disulfide bonds are essential for Ero1p oxidase activity: Cys100-Cys105 and Cys352-Cys355. Genetic and structural data indicate a disulfide bond is transferred from Cys100-Cys105 directly to Pdi1p, whereas a Cys352-Cys355 disulfide bond is used to reoxidize the reduced Cys100-Cys105 pair through an internal thiol-transfer reaction. Electron transfer from Cys352-Cys355 to molecular oxygen, by way of a flavin cofactor, maintains Cys352-Cys355 in an oxidized form. Herein, we identify a mixed disulfide species that confirms the Ero1p intercysteine thiol-transfer relay in vivo and identify Cys105 and Cys352 as the cysteines that mediate thiol-disulfide exchange. Moreover, we describe Ero1p mutants that have the surprising ability to oxidize substrates in the absence of Cys100-Cys105. We show the oxidase activity of these mutants results from structural changes in Ero1p that allow substrates increased access to Cys352-Cys355, which are normally buried beneath the protein surface. The altered activity of these Ero1p mutants toward selected substrates leads us to propose the catalytic mechanism involving transfer between cysteine pairs evolved to impart substrate specificity to Ero1p.


Asunto(s)
Cisteína/metabolismo , Disulfuros/metabolismo , Glicoproteínas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Transporte Biológico/genética , Secuencia Conservada , Cisteína/genética , Prueba de Complementación Genética , Glicoproteínas/genética , Datos de Secuencia Molecular , Mutación , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/fisiología , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Conformación Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA