Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Sleep ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874415

RESUMEN

STUDY OBJECTIVES: Menopause is associated with nighttime sleep fragmentation, declining estradiol and impaired cognition. In a model of pharmacologically-induced estradiol suppression mimicking menopause, we examined the impact of menopause-pattern sleep fragmentation on daytime neurobehavioral performance and sleepiness in premenopausal women. METHODS: Twenty premenopausal women completed two 5-night inpatient studies in the mid-to-late follicular phase (estrogenized) and after pharmacological estradiol suppression (hypo-estrogenized). During each study, participants had an uninterrupted 8-hour sleep opportunity for two nights, followed by three nights where sleep was experimentally fragmented to mimic menopause-pattern sleep disturbance, and during which the sleep opportunity was extended to prevent shortening of the sleep duration. Neurobehavioral performance and subjective sleepiness were measured using the Psychomotor Vigilance Task and Karolinska Sleepiness Scale (KSS). RESULTS: Compared to unfragmented sleep, sleep fragmentation increased attentional lapses (+0.6 lapses, p<0.05), slowed reaction time (+9.4 milliseconds, p<0.01), and increased daytime sleepiness (+0.5 KSS score, p<0.001). Estradiol suppression increased attentional lapses (+0.8; p<0.001) and reaction time (+12.3, p<0.01) but did not significantly affect daytime sleepiness. The effect of sleep fragmentation on neurobehavioral performance differed by estradiol state, such that the adverse effects of sleep fragmentation on attentional lapses (+0.9, trend p=0.06) and reaction time (+15, p<0.05) were observed only when estrogenized. CONCLUSIONS: Menopause-pattern sleep fragmentation and estradiol suppression worsened neurobehavioral performance and daytime sleepiness, even while sleep duration was not reduced. The adverse effects of sleep fragmentation in the context of an adequate sleep duration highlight the importance of sleep continuity as a vital aspect of good sleep health.

2.
Lancet Diabetes Endocrinol ; 12(3): 209-214, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301678

RESUMEN

No comprehensive classification system that guides prognosis and therapy of pituitary adenomas exists. The 2022 WHO histopathology-based classification system can only be applied to lesions that are resected, which represent few clinically significant pituitary adenomas. Many factors independent of histopathology provide mechanistic insight into causation and influence prognosis and treatment of pituitary adenomas. We propose a new approach to guide prognosis and therapy of pituitary adenomas by integrating clinical, genetic, biochemical, radiological, pathological, and molecular information for all adenomas arising from anterior pituitary cell lineages. The system uses an evidence-based scoring of risk factors to yield a cumulative score that reflects disease severity and can be used at the bedside to guide pituitary adenoma management. Once validated in prospective studies, this simple manageable classification system could provide a standardised platform for assessing disease severity, prognosis, and effects of therapy on pituitary adenomas.


Asunto(s)
Adenoma , Neoplasias Hipofisarias , Humanos , Neoplasias Hipofisarias/diagnóstico , Neoplasias Hipofisarias/terapia , Estudios Prospectivos , Pronóstico , Adenoma/diagnóstico , Adenoma/terapia , Factores de Riesgo
3.
Nat Rev Endocrinol ; 20(2): 111-123, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38049643

RESUMEN

An individual's nutritional status has a powerful effect on sexual maturation. Puberty onset is delayed in response to chronic energy insufficiency and is advanced under energy abundance. The consequences of altered pubertal timing for human health are profound. Late puberty increases the chances of cardiometabolic, musculoskeletal and neurocognitive disorders, whereas early puberty is associated with increased risks of adult obesity, type 2 diabetes mellitus, cardiovascular diseases and various cancers, such as breast, endometrial and prostate cancer. Kennedy and Mitra's trailblazing studies, published in 1963 and using experimental models, were the first to demonstrate that nutrition is a key factor in puberty onset. Building on this work, the field has advanced substantially in the past decade, which is largely due to the impressive development of molecular tools for experimentation and population genetics. In this Review, we discuss the latest advances in basic and translational sciences underlying the nutritional and metabolic control of pubertal development, with a focus on perspectives and future directions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neoplasias de la Próstata , Masculino , Adulto , Humanos , Diabetes Mellitus Tipo 2/genética , Pubertad/fisiología , Maduración Sexual/fisiología , Obesidad/genética
5.
JCEM Case Rep ; 1(2): luad030, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37908473

RESUMEN

GH-secreting pituitary adenomas can cause gigantism or acromegaly, determined by onset before or after epiphyseal fusion of the distal ends of the radius and ulna. Overlapping phenotypes can occur when the condition presents peripubertally. Gigantism is associated with identifiable hereditary causes and genetic mutations in almost 50% of cases; genetic testing should be considered in patients with gigantism and early-onset acromegaly, especially (but not only) when pituitary tumors have aggressive features and/or are refractory to standard treatments. Here, we present a case of a young adult with a giant somatotroph adenoma resistant to multiple treatment modalities and negative for mutations in AIP, which encodes aryl hydrocarbon receptor-interacting protein.

6.
J Clin Invest ; 133(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37847567

RESUMEN

Three sisters, born from consanguineous parents, manifested a unique Müllerian anomaly characterized by uterine hypoplasia with thin estrogen-unresponsive endometrium and primary amenorrhea, but with spontaneous tubal pregnancies. Through whole-exome sequencing followed by comprehensive genetic analysis, a missense variant was identified in the OSR1 gene. We therefore investigated OSR1/OSR1 expression in postpubertal human uteri, and the prenatal and postnatal expression pattern of Osr1/Osr1 in murine developing Müllerian ducts (MDs) and endometrium, respectively. We then investigated whether Osr1 deletion would affect MD development, using WT and genetically engineered mice. Human uterine OSR1/OSR1 expression was found primarily in the endometrium. Mouse Osr1 was expressed prenatally in MDs and Wolffian ducts (WDs), from rostral to caudal segments, in E13.5 embryos. MDs and WDs were absent on the left side and MDs were rostrally truncated on the right side of E13.5 Osr1-/- embryos. Postnatally, Osr1 was expressed in mouse uteri throughout their lifespan, peaking at postnatal days 14 and 28. Osr1 protein was present primarily in uterine luminal and glandular epithelial cells and in the epithelial cells of mouse oviducts. Through this translational approach, we demonstrated that OSR1 in humans and mice is important for MD development and endometrial receptivity and may be implicated in uterine factor infertility.


Asunto(s)
Infertilidad , Conductos Paramesonéfricos , Animales , Femenino , Humanos , Ratones , Embarazo , Endometrio , Células Epiteliales , Conductos Paramesonéfricos/metabolismo , Útero
7.
Nat Rev Endocrinol ; 19(12): 722-740, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37670148

RESUMEN

This Consensus Statement from an international, multidisciplinary workshop sponsored by the Pituitary Society offers evidence-based graded consensus recommendations and key summary points for clinical practice on the diagnosis and management of prolactinomas. Epidemiology and pathogenesis, clinical presentation of disordered pituitary hormone secretion, assessment of hyperprolactinaemia and biochemical evaluation, optimal use of imaging strategies and disease-related complications are addressed. In-depth discussions present the latest evidence on treatment of prolactinoma, including efficacy, adverse effects and options for withdrawal of dopamine agonist therapy, as well as indications for surgery, preoperative medical therapy and radiation therapy. Management of prolactinoma in special situations is discussed, including cystic lesions, mixed growth hormone-secreting and prolactin-secreting adenomas and giant and aggressive prolactinomas. Furthermore, considerations for pregnancy and fertility are outlined, as well as management of prolactinomas in children and adolescents, patients with an underlying psychiatric disorder, postmenopausal women, transgender individuals and patients with chronic kidney disease. The workshop concluded that, although treatment resistance is rare, there is a need for additional therapeutic options to address clinical challenges in treating these patients and a need to facilitate international registries to enable risk stratification and optimization of therapeutic strategies.


Asunto(s)
Hiperprolactinemia , Neoplasias Hipofisarias , Prolactinoma , Embarazo , Adolescente , Niño , Humanos , Femenino , Prolactinoma/terapia , Prolactinoma/tratamiento farmacológico , Neoplasias Hipofisarias/diagnóstico , Neoplasias Hipofisarias/terapia , Neoplasias Hipofisarias/complicaciones , Agonistas de Dopamina/uso terapéutico , Diagnóstico por Imagen , Prolactina
8.
Eur J Endocrinol ; 189(3): 422-428, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703313

RESUMEN

BACKGROUND: Several rare loss-of-function mutations of delta-like noncanonical notch ligand 1 (DLK1) have been described in non-syndromic children with familial central precocious puberty (CPP). OBJECTIVE: We investigated genetic abnormalities of DLK1 gene in a French cohort of children with idiopathic CPP. Additionally, we explored the pattern of DLK1 serum levels in patients with CPP and in healthy children at puberty, as well as in wild-type female mice. PATIENTS AND METHODS: Genomic DNA was obtained from 121 French index cases with CPP. Automated sequencing of the coding region of the DLK1 gene was performed in all cases. Serum DLK1 levels were measured by enzyme linked immunosorbent assay (ELISA) in 209 individuals, including 191 with normal pubertal development and in female mice during postnatal pubertal maturation. RESULTS: We identified 2 rare pathogenic DLK1 allelic variants: A stop gain variant (c.372C>A; p.Cys124X) and a start loss variant (c.2T>G; p.Met1?, or p.0) in 2 French girls with CPP. Mean serum DLK1 levels were similar between healthy children and idiopathic CPP children. In healthy individuals, DLK1 levels correlated with pubertal stage: In girls, DLK1 decreased between Tanner stages III and V, whereas in boys, DLK1 decreased between Tanner stages II and V (P = .008 and .016, respectively). Serum levels of Dlk1 also decreased in wild-type female mice. CONCLUSIONS: Novel loss-of-function mutations in DLK1 gene were identified in 2 French girls with CPP. Additionally, we demonstrated a pattern of dynamic changes in circulating DLK1 serum levels in humans and mice during pubertal stages, reinforcing the role of this factor in pubertal timing.


Asunto(s)
Pubertad Precoz , Animales , Niño , Femenino , Humanos , Masculino , Ratones , Alelos , Proteínas de Unión al Calcio/genética , Ensayo de Inmunoadsorción Enzimática , Proteínas de la Membrana/genética , Mutación , Pubertad Precoz/genética
9.
Nat Rev Endocrinol ; 19(11): 671-678, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37592077

RESUMEN

In the 2022 fifth edition of the WHO Classification of Endocrine Tumours and of Central Nervous System Tumours, pituitary adenomas are reclassified as neuroendocrine tumours (NETs). This change confers an oncology label to neoplasms that are overwhelmingly benign. A comprehensive clinical classification schema is required to guide prognosis, therapy and outcomes for all patients with pituitary adenomas. Pituitary adenomas and NETs exhibit some morphological and ultrastructural similarities. However, unlike NETs, pituitary adenomas are highly prevalent, yet indolent and rarely become malignant. This Perspective presents the outcomes of an interdisciplinary international workshop that addressed the merit and clinical implications of the classification change of pituitary adenoma to NET. Many non-histological factors provide mechanistic insight and influence the prognosis and treatment of pituitary adenoma. We recommend the development of a comprehensive classification that integrates clinical, genetic, biochemical, radiological, pathological and molecular information for all anterior pituitary neoplasms.

10.
Endocrinology ; 164(9)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37585624

RESUMEN

Studies in humans and mice support a role for Makorin RING finger protein 3 (MKRN3) as an inhibitor of gonadotropin-releasing hormone (GnRH) secretion prepubertally, and its loss of function is the most common genetic cause of central precocious puberty in humans. Studies have shown that the gonads can synthesize neuropeptides and express MKRN3/Mkrn3 mRNA. Therefore, we aimed to investigate the spatiotemporal expression pattern of Mkrn3 in gonads during sexual development, and its potential regulation in the functional testicular compartments by gonadotropins. Mkrn3 mRNA was detected in testes and ovaries of wild-type mice at all ages evaluated, with a sexually dimorphic expression pattern between male and female gonads. Mkrn3 expression was highest peripubertally in the testes, whereas it was lower peripubertally than prepubertally in the ovaries. Mkrn3 is expressed primarily in the interstitial compartment of the testes but was also detected at low levels in the seminiferous tubules. In vitro studies demonstrated that Mkrn3 mRNA levels increased in human chorionic gonadotropin (hCG)-treated Leydig cell primary cultures. Acute administration of a GnRH agonist in adult mice increased Mkrn3 expression in testes, whereas inhibition of the hypothalamic-pituitary-gonadal axis by chronic administration of GnRH agonist had the opposite effect. Finally, we found that hCG increased Mkrn3 mRNA levels in a dose-dependent manner. Taken together, our developmental expression analyses, in vitro and in vivo studies show that Mkrn3 is expressed in the testes, predominantly in the interstitial compartment, and that Mkrn3 expression increases after puberty and is responsive to luteinizing hormone/hCG stimulation.


Asunto(s)
Gonadotropina Coriónica , Hormona Luteinizante , Pubertad Precoz , Ubiquitina-Proteína Ligasas , Animales , Femenino , Humanos , Masculino , Ratones , Hormona Liberadora de Gonadotropina , ARN Mensajero , Ubiquitina-Proteína Ligasas/genética
11.
Lancet Diabetes Endocrinol ; 11(8): 545-554, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37385287

RESUMEN

BACKGROUND: Identification of genetic causes of central precocious puberty have revealed epigenetic mechanisms as regulators of human pubertal timing. MECP2, an X-linked gene, encodes a chromatin-associated protein with a role in gene transcription. MECP2 loss-of-function mutations usually cause Rett syndrome, a severe neurodevelopmental disorder. Early pubertal development has been shown in several patients with Rett syndrome. The aim of this study was to explore whether MECP2 variants are associated with an idiopathic central precocious puberty phenotype. METHODS: In this translational cohort study, participants were recruited from seven tertiary centres from five countries (Brazil, Spain, France, the USA, and the UK). Patients with idiopathic central precocious puberty were investigated for rare potentially damaging variants in the MECP2 gene, to assess whether MECP2 might contribute to the cause of central precocious puberty. Inclusion criteria were the development of progressive pubertal signs (Tanner stage 2) before the age of 8 years in girls and 9 years in boys and basal or GnRH-stimulated LH pubertal concentrations. Exclusion criteria were the diagnosis of peripheral precocious puberty and the presence of any recognised cause of central precocious puberty (CNS lesions, known monogenic causes, genetic syndromes, or early exposure to sex steroids). All patients included were followed up at the outpatient clinics of participating academic centres. We used high-throughput sequencing in 133 patients and Sanger sequencing of MECP2 in an additional 271 patients. Hypothalamic expression of Mecp2 and colocalisation with GnRH neurons were determined in mice to show expression of Mecp2 in key nuclei related to pubertal timing regulation. FINDINGS: Between Jun 15, 2020, and Jun 15, 2022, 404 patients with idiopathic central precocious puberty (383 [95%] girls and 21 [5%] boys; 261 [65%] sporadic cases and 143 [35%] familial cases from 134 unrelated families) were enrolled and assessed. We identified three rare heterozygous likely damaging coding variants in MECP2 in five girls: a de novo missense variant (Arg97Cys) in two monozygotic twin sisters with central precocious puberty and microcephaly; a de novo missense variant (Ser176Arg) in one girl with sporadic central precocious puberty, obesity, and autism; and an insertion (Ala6_Ala8dup) in two unrelated girls with sporadic central precocious puberty. Additionally, we identified one rare heterozygous 3'UTR MECP2 insertion (36_37insT) in two unrelated girls with sporadic central precocious puberty. None of them manifested Rett syndrome. Mecp2 protein colocalised with GnRH expression in hypothalamic nuclei responsible for GnRH regulation in mice. INTERPRETATION: We identified rare MECP2 variants in girls with central precocious puberty, with or without mild neurodevelopmental abnormalities. MECP2 might have a role in the hypothalamic control of human pubertal timing, adding to the evidence of involvement of epigenetic and genetic mechanisms in this crucial biological process. FUNDING: Fundação de Amparo à Pesquisa do Estado de São Paulo, Conselho Nacional de Desenvolvimento Científico e Tecnológico, and the Wellcome Trust.


Asunto(s)
Pubertad Precoz , Síndrome de Rett , Animales , Niño , Femenino , Humanos , Masculino , Ratones , Brasil , Estudios de Cohortes , Hormona Folículo Estimulante , Hormona Liberadora de Gonadotropina , Hormona Luteinizante/metabolismo , Pubertad Precoz/genética , Pubertad Precoz/diagnóstico , Síndrome de Rett/genética , Síndrome de Rett/complicaciones
12.
J Clin Endocrinol Metab ; 108(11): e1347-e1357, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37207451

RESUMEN

CONTEXT: Perturbations to the hypothalamic-pituitary-adrenal (HPA) axis have been hypothesized to increase postmenopausal cardiometabolic risk. Although sleep disturbance, a known risk factor for cardiometabolic disease, is prevalent during the menopause transition, it is unknown whether menopause-related sleep disturbance and estradiol decline disturb the HPA axis. OBJECTIVE: We examined the effect of experimental fragmentation of sleep and suppression of estradiol as a model of menopause on cortisol levels in healthy young women. METHODS: Twenty-two women completed a 5-night inpatient study during the mid-to-late follicular phase (estrogenized). A subset (n = 14) repeated the protocol after gonadotropin-releasing hormone agonist-induced estradiol suppression. Each inpatient study included 2 unfragmented sleep nights followed by 3 experimental sleep fragmentation nights. This study took place with premenopausal women at an academic medical center. Interventions included sleep fragmentation and pharmacological hypoestrogenism, and main outcome measures were serum bedtime cortisol levels and cortisol awakening response (CAR). RESULTS: Bedtime cortisol increased 27% (P = .03) and CAR decreased 57% (P = .01) following sleep fragmentation compared to unfragmented sleep. Polysomnographic-derived wake after sleep-onset (WASO) was positively associated with bedtime cortisol levels (P = .047) and negatively associated with CAR (P < .01). Bedtime cortisol levels were 22% lower in the hypoestrogenized state compared to the estrogenized state (P = .02), while CAR was similar in both estradiol conditions (P = .38). CONCLUSION: Estradiol suppression and modifiable menopause-related sleep fragmentation both independently perturb HPA axis activity. Sleep fragmentation, commonly seen in menopausal women, may disrupt the HPA axis, which in turn may lead to adverse health effects as women age.


Asunto(s)
Estradiol , Hidrocortisona , Humanos , Femenino , Privación de Sueño , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Menopausia , Sueño/fisiología , Saliva
13.
JCI Insight ; 8(8)2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37092553

RESUMEN

Makorin ring finger protein 3 (MKRN3) was identified as an inhibitor of puberty initiation with the report of loss-of-function mutations in association with central precocious puberty. Consistent with this inhibitory role, a prepubertal decrease in Mkrn3 expression was observed in the mouse hypothalamus. Here, we investigated the mechanisms of action of MKRN3 in the central regulation of puberty onset. We showed that MKRN3 deletion in hypothalamic neurons derived from human induced pluripotent stem cells was associated with significant changes in expression of genes controlling hypothalamic development and plasticity. Mkrn3 deletion in a mouse model led to early puberty onset in female mice. We found that Mkrn3 deletion increased the number of dendritic spines in the arcuate nucleus but did not alter the morphology of GnRH neurons during postnatal development. In addition, we identified neurokinin B (NKB) as an Mkrn3 target. Using proteomics, we identified insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) as another target of MKRN3. Interactome analysis revealed that IGF2BP1 interacted with MKRN3, along with several members of the polyadenylate-binding protein family. Our data show that one of the mechanisms by which MKRN3 inhibits pubertal initiation is through regulation of prepubertal hypothalamic development and plasticity, as well as through effects on NKB and IGF2BP1.


Asunto(s)
Células Madre Pluripotentes Inducidas , Pubertad Precoz , Humanos , Femenino , Ratones , Animales , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Hipotálamo/metabolismo , Pubertad , Hormona Liberadora de Gonadotropina/metabolismo , Pubertad Precoz/genética , Pubertad Precoz/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
14.
J Appl Physiol (1985) ; 134(6): 1438-1449, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37102698

RESUMEN

Gonadal hormones, such as testosterone and estradiol, modulate muscle size and strength in males and females. However, the influence of sex hormones on muscle strength in micro- and partial-gravity environments (e.g., the Moon or Mars) is not fully understood. The purpose of this study was to determine the influence of gonadectomy (castration/ovariectomy) on progression of muscle atrophy in both micro- and partial-gravity environments in male and female rats. Male and female Fischer rats (n = 120) underwent castration/ovariectomy (CAST/OVX) or sham surgery (SHAM) at 11 wk of age. After 2 wk of recovery, rats were exposed to hindlimb unloading (0 g), partial weight bearing at 40% of normal loading (0.4 g, Martian gravity), or normal loading (1.0 g) for 28 days. In males, CAST did not exacerbate body weight loss or other metrics of musculoskeletal health. In females, OVX animals tended to have greater body weight loss and greater gastrocnemius loss. Within 7 days of exposure to either microgravity or partial gravity, females had detectable changes to estrous cycle, with greater time spent in low-estradiol phases diestrus and metestrus (∼47% in 1 g vs. 58% in 0 g and 72% in 0.4 g animals, P = 0.005). We conclude that in males testosterone deficiency at the initiation of unloading has little effect on the trajectory of muscle loss. In females, initial low estradiol status may result in greater musculoskeletal losses.NEW & NOTEWORTHY We find that removal of gonadal hormones does not exacerbate muscle loss in males or females during exposure to either simulated microgravity or partial-gravity environments. However, simulated micro- and partial gravity did affect females' estrous cycles, with more time spent in low-estrogen phases. Our findings provide important data on the influence of gonadal hormones on the trajectory of muscle loss during unloading and will help inform NASA for future crewed missions to space and other planets.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Humanos , Ratas , Masculino , Femenino , Animales , Ovariectomía , Testosterona/fisiología , Estradiol , Músculo Esquelético , Orquiectomía , Hormonas Gonadales , Ratas Endogámicas F344 , Pérdida de Peso
15.
J Clin Endocrinol Metab ; 108(7): 1646-1656, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-36916482

RESUMEN

CONTEXT: Loss-of-function mutations in the maternally imprinted genes, MKRN3 and DLK1, are associated with central precocious puberty (CPP). Mutations in MKRN3 are the most common known genetic etiology of CPP. OBJECTIVE: This work aimed to screen patients with CPP for MKRN3 and DLK1 mutations and analyze the effects of identified mutations on protein function in vitro. METHODS: Participants included 84 unrelated children with CPP (79 girls, 5 boys) and, when available, their first-degree relatives. Five academic medical institutions participated. Sanger sequencing of MKRN3 and DLK1 5' upstream flanking and coding regions was performed on DNA extracted from peripheral blood leukocytes. Western blot analysis was performed to assess protein ubiquitination profiles. RESULTS: Eight heterozygous MKRN3 mutations were identified in 9 unrelated girls with CPP. Five are novel missense mutations, 2 were previously identified in patients with CPP, and 1 is a frameshift variant not previously associated with CPP. No pathogenic variants were identified in DLK1. Girls with MKRN3 mutations had an earlier age of initial pubertal signs and higher basal serum luteinizing hormone and follicle-stimulating hormone compared to girls with CPP without MRKN3 mutations. Western blot analysis revealed that compared to wild-type MKRN3, mutations within the RING finger domain reduced ubiquitination whereas the mutations outside this domain increased ubiquitination. CONCLUSION: MKRN3 mutations were present in 10.7% of our CPP cohort, consistent with previous studies. The novel identified mutations in different domains of MKRN3 revealed different patterns of ubiquitination, suggesting distinct molecular mechanisms by which the loss of MRKN3 results in early pubertal onset.


Asunto(s)
Mutación Missense , Pubertad Precoz , Niño , Masculino , Femenino , Humanos , Pubertad Precoz/genética , Ubiquitina-Proteína Ligasas/genética , Mutación , Ubiquitinación , Pubertad
16.
Ann Intern Med ; 176(3): 298-302, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36848656

RESUMEN

BACKGROUND: The estimated prevalence of pituitary lesions is 10% to 38.5% in radiologic studies. However, how frequently these incidental lesions should be monitored by serial pituitary magnetic resonance imaging (MRI) remains unclear. OBJECTIVE: To evaluate changes in pituitary microadenomas over time. DESIGN: Retrospective, longitudinal cohort study. SETTING: Mass General Brigham, Boston, Massachusetts. PATIENTS: Evidence of pituitary microadenoma from MRI. MEASUREMENTS: Dimensions of pituitary microadenomas. RESULTS: During the study period (from 2003 to 2021), 414 patients with pituitary microadenomas were identified. Of the 177 patients who had more than 1 MRI, 78 had no change in the size of the microadenoma over time, 49 had an increase in size, 34 had a decrease in size, and 16 had both an increase and decrease in size. By linear mixed model analysis, the estimated slope was 0.016 mm/y (95% CI, -0.037 to 0.069). In the subgroup analysis, pituitary adenomas with a baseline size of 4 mm or less tended to increase in size. The estimated slope was 0.09 mm/y (CI, 0.020 to 0.161). In contrast, in the subgroup with baseline tumor size greater than 4 mm, the size tended to decrease. The estimated slope was -0.063 mm/y (CI, -0.141 to 0.015). LIMITATION: Retrospective cohort, some patients were lost to follow-up for unknown reasons, and data were limited to local large institutions. CONCLUSION: During the study period, approximately two thirds of the microadenomas remained unchanged or decreased in size. The growth, if any, was slow. These findings suggest that less frequent pituitary MRI surveillance for patients with incidental pituitary microadenomas may be safe. PRIMARY FUNDING SOURCE: None.


Asunto(s)
Adenoma , Neoplasias Hipofisarias , Humanos , Neoplasias Hipofisarias/diagnóstico por imagen , Neoplasias Hipofisarias/patología , Estudios Retrospectivos , Estudios Longitudinales , Adenoma/diagnóstico por imagen , Adenoma/patología , Estudios de Cohortes , Imagen por Resonancia Magnética/métodos
17.
Lancet Diabetes Endocrinol ; 11(3): 203-216, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36620967

RESUMEN

Puberty is a major maturational event; its mechanisms and timing are driven by genetic determinants, but also controlled by endogenous and environmental cues. Substantial progress towards elucidation of the neuroendocrine networks governing puberty has taken place. However, key aspects of the mechanisms responsible for the precise timing of puberty and its alterations have only recently begun to be deciphered, propelled by epidemiological data suggesting that pubertal timing is changing in humans, via mechanisms that are not yet understood. By integrating basic and clinical data, we provide a comprehensive overview of current advances on the physiological basis of puberty, with a particular focus on the roles of kisspeptins and other central transmitters, the underlying molecular and endocrine mechanisms, and the pathways involved in pubertal modulation by nutritional and metabolic cues. Additionally, we have summarised molecular features of precocious and delayed puberty in both sexes, as revealed by clinical and genetic studies. This Review is a synoptic up-to-date view of how puberty is controlled and of the pathogenesis of major pubertal alterations, from both a clinical and translational perspective. We also highlight unsolved challenges that will seemingly concentrate future research efforts in this active domain of endocrinology.


Asunto(s)
Pubertad Precoz , Pubertad , Masculino , Femenino , Humanos , Kisspeptinas/genética , Kisspeptinas/metabolismo , Pubertad Precoz/genética
18.
Endocr Rev ; 44(2): 193-221, 2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35930274

RESUMEN

The etiology of central precocious puberty (CPP) is multiple and heterogeneous, including congenital and acquired causes that can be associated with structural or functional brain alterations. All causes of CPP culminate in the premature pulsatile secretion of hypothalamic GnRH and, consequently, in the premature reactivation of hypothalamic-pituitary-gonadal axis. The activation of excitatory factors or suppression of inhibitory factors during childhood represent the 2 major mechanisms of CPP, revealing a delicate balance of these opposing neuronal pathways. Hypothalamic hamartoma (HH) is the most well-known congenital cause of CPP with central nervous system abnormalities. Several mechanisms by which hamartoma causes CPP have been proposed, including an anatomical connection to the anterior hypothalamus, autonomous neuroendocrine activity in GnRH neurons, trophic factors secreted by HH, and mechanical pressure applied to the hypothalamus. The importance of genetic and/or epigenetic factors in the underlying mechanisms of CPP has grown significantly in the last decade, as demonstrated by the evidence of genetic abnormalities in hypothalamic structural lesions (eg, hamartomas, gliomas), syndromic disorders associated with CPP (Temple, Prader-Willi, Silver-Russell, and Rett syndromes), and isolated CPP from monogenic defects (MKRN3 and DLK1 loss-of-function mutations). Genetic and epigenetic discoveries involving the etiology of CPP have had influence on the diagnosis and familial counseling providing bases for potential prevention of premature sexual development and new treatment targets in the future. Global preventive actions inducing healthy lifestyle habits and less exposure to endocrine-disrupting chemicals during the lifespan are desirable because they are potentially associated with CPP.


Asunto(s)
Enfermedades Hipotalámicas , Pubertad Precoz , Humanos , Pubertad Precoz/diagnóstico , Pubertad Precoz/genética , Hormona Liberadora de Gonadotropina/metabolismo , Enfermedades Hipotalámicas/complicaciones , Hipotálamo , Pubertad , Ubiquitina-Proteína Ligasas/metabolismo
19.
NEJM Evid ; 2(8): EVIDmr2300084, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38320145

RESUMEN

A 72-Year-Old Woman with Fatigue and Shortness of BreathA 72-year-old woman presented for evaluation of fatigue, dyspnea on exertion, and weight loss. How do you approach the evaluation, and what is the most likely diagnosis?


Asunto(s)
Ecocardiografía , Fatiga , Femenino , Humanos , Anciano , Disnea , Diagnóstico Diferencial
20.
Sports Med Health Sci ; 5(4): 319-328, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38314043

RESUMEN

Skeletal muscle size and strength are important for overall health for astronauts. However, how male and female muscle may respond differently to micro- and partial-gravity environments is not fully understood. The purpose of this study was to determine how biological sex and sex steroid hormones influence the progression of muscle atrophy after long term exposure to micro and partial gravity environments in male and female rats. Male and female Fisher rats (n â€‹= â€‹120) underwent either castration/ovariectomy or sham surgeries. After two weeks recovery, animals were divided into microgravity (0g), partial-gravity (40% of weight bearing, 0.4g), or full weight bearing (1g) interventions for 28 days. Measurements of muscle size and strength were evaluated prior to and after interventions. At 0g, females lost more dorsiflexion strength, plantar flexion strength, and other metrics of muscle size compared to males; castration/ovariectomy did not influence these differences. Additionally, at 0.4g, females lost more dorsiflexion strength, plantar flexion strength, and other metrics of muscle strength compared to males; castration/ovariectomy did not influence these differences. Females have greater musculoskeletal aberrations during exposure to both microgravity and partial-gravity environments; these differences are not dependent on the presence of sex steroid hormones. Correspondingly, additional interventions may be necessary to mitigate musculoskeletal loss in female astronauts to protect occupational and overall health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA